Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
PLoS One ; 18(3): e0279634, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36928058

RESUMO

Anti-vascular endothelial growth factor (VEGF) therapy has been developed for the treatment of a variety of cancers. Although this therapy may be a promising alternative treatment for refractory pituitary adenomas and pituitary carcinomas, the effects of anti-VEGF agents on the pituitary gland are not yet well understood. Here, we found that mice administered with OSI-930, an inhibitor of receptor tyrosine kinases including VEGF receptor 1 and 2, frequently exhibited hemorrhage in the pituitary gland. This is the first report that anti-VEGF therapy can cause pituitary apoplexy. C57BL/6 mice were daily injected intraperitoneally with 100 mg/kg body weight of OSI-930 for one to six days. Pituitary glands were immunohistochemically examined. Four of six mice treated for three days and all of five mice treated for six days exhibited hemorrhage in the pituitary gland. In all cases, the hemorrhage occurred just around Rathke's cleft. In OSI-930-administered mice, the vascular coverage and branching were reduced in the anterior lobe, and capillary networks were also decreased in the intermediate lobe in a treatment-day dependent manner. Few blood vessels around Rathke's cleft of the intermediate lobe express VE-cadherin and are covered with platelet-derived growth factor receptor-ß (PDGFR-ß)-positive cells, which suggests that capillaries around Rathke's cleft of the intermediate lobe were VE-cadherin-negative and not covered with pericytes. The reduction of capillary plexus around Rathke's cleft was observed at the site where hemorrhage occurred, suggesting a causal relationship with the pathogenesis of pituitary hemorrhage. Our study demonstrates that anti-VEGF agents have a risk of pituitary apoplexy. Pituitary apoplexy should be kept in mind as an adverse effect of anti-VEGF therapy.


Assuntos
Apoplexia Hipofisária , Receptores de Fatores de Crescimento do Endotélio Vascular , Animais , Camundongos , Hemorragia Cerebral/complicações , Camundongos Endogâmicos C57BL , Apoplexia Hipofisária/induzido quimicamente , Apoplexia Hipofisária/genética , Hipófise/efeitos dos fármacos , Hipófise/patologia , Neoplasias Hipofisárias/tratamento farmacológico , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptores de Fatores de Crescimento do Endotélio Vascular/efeitos dos fármacos
2.
Mol Psychiatry ; 27(2): 929-938, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34737458

RESUMO

Copy number variants (CNVs) have provided a reliable entry point to identify the structural correlates of atypical cognitive development. Hemizygous deletion of human chromosome 22q11.2 is associated with impaired cognitive function; however, the mechanisms by which the CNVs contribute to cognitive deficits via diverse structural alterations in the brain remain unclear. This study aimed to determine the cellular basis of the link between alterations in brain structure and cognitive functions in mice with a heterozygous deletion of Tbx1, one of the 22q11.2-encoded genes. Ex vivo whole-brain diffusion-tensor imaging (DTI)-magnetic resonance imaging (MRI) in Tbx1 heterozygous mice indicated that the fimbria was the only region with significant myelin alteration. Electron microscopic and histological analyses showed that Tbx1 heterozygous mice exhibited an apparent absence of large myelinated axons and thicker myelin in medium axons in the fimbria, resulting in an overall decrease in myelin. The fimbria of Tbx1 heterozygous mice showed reduced mRNA levels of Ng2, a gene required to produce oligodendrocyte precursor cells. Moreover, postnatal progenitor cells derived from the subventricular zone, a source of oligodendrocytes in the fimbria, produced fewer oligodendrocytes in vitro. Behavioral analyses of these mice showed selectively slower acquisition of spatial memory and cognitive flexibility with no effects on their accuracy or sensory or motor capacities. Our findings provide a genetic and cellular basis for the compromised cognitive speed in patients with 22q11.2 hemizygous deletion.


Assuntos
Variações do Número de Cópias de DNA , Proteínas com Domínio T , Animais , Cognição , Variações do Número de Cópias de DNA/genética , Heterozigoto , Camundongos , Oligodendroglia , Proteínas com Domínio T/genética
3.
Cancer Immunol Res ; 10(1): 56-69, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34799346

RESUMO

New approaches beyond PD-1/PD-L1 inhibition are required to target the immunologically diverse tumor microenvironment (TME) in high-grade serous ovarian cancer (HGSOC). In this study, we explored the immunosuppressive effect of B7-H3 (CD276) via the CCL2-CCR2-M2 macrophage axis and its potential as a therapeutic target. Transcriptome analysis revealed that B7-H3 is highly expressed in PD-L1-low, nonimmunoreactive HGSOC tumors, and its expression negatively correlated with an IFNγ signature, which reflects the tumor immune reactivity. In syngeneic mouse models, B7-H3 (Cd276) knockout (KO) in tumor cells, but not in stromal cells, suppressed tumor progression, with a reduced number of M2 macrophages and an increased number of IFNγ+CD8+ T cells. CCL2 expression was downregulated in the B7-H3 KO tumor cell lines. Inhibition of the CCL2-CCR2 axis partly negated the effects of B7-H3 suppression on M2 macrophage migration and differentiation, and tumor progression. In patients with HGSOC, B7-H3 expression positively correlated with CCL2 expression and M2 macrophage abundance, and patients with B7-H3-high tumors had fewer tumoral IFNγ+CD8+ T cells and poorer prognosis than patients with B7-H3-low tumors. Thus, B7-H3 expression in tumor cells contributes to CCL2-CCR2-M2 macrophage axis-mediated immunosuppression and tumor progression. These findings provide new insights into the immunologic TME and could aid the development of new therapeutic approaches against the unfavorable HGSOC phenotype.


Assuntos
Antígenos B7/imunologia , Linfócitos T CD8-Positivos/imunologia , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/terapia , Animais , Antígenos B7/genética , Linfócitos T CD8-Positivos/patologia , Linhagem Celular Tumoral , Quimiocina CCL2/genética , Feminino , Humanos , Tolerância Imunológica , Linfócitos do Interstício Tumoral/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Receptores CCR2/genética , Fatores de Transcrição/metabolismo , Microambiente Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Alzheimers Dement (Amst) ; 13(1): e12246, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34692983

RESUMO

INTRODUCTION: We developed machine learning (ML) designed to analyze structural brain magnetic resonance imaging (MRI), and trained it on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. In this study, we verified its utility in the Japanese population. METHODS: A total of 535 participants were enrolled from the Japanese ADNI database, including 148 AD, 152 normal, and 235 mild cognitive impairment (MCI). Probability of AD was expressed as AD likelihood scores (ADLS). RESULTS: The accuracy of AD diagnosis was 88.0% to 91.2%. The accuracy of predicting the disease progression in non-dementia participants over a 3-year observation was 76.0% to 79.3%. More than 90% of the participants with low ADLS did not progress to AD within 3 years. In the amyloid positron emission tomography (PET)-positive MCI, the hazard ratio of progression was 2.39 with low ADLS, and 5.77 with high ADLS. When high ADLS was defined as N+ and Pittsburgh compound B (PiB) PET positivity was defined as A+, the time to disease progression for 50% of MCI participants was 23.7 months in A+N+, whereas it was 52.3 months in A+N-. CONCLUSION: These results support the feasibility of our ML for the diagnosis of AD and prediction of the disease progression.

5.
Dev Psychobiol ; 63(1): 108-113, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32573780

RESUMO

How the intrinsic sequence structure of neonatal mouse pup ultrasonic vocalization (USV) and maternal experiences determine maternal behaviors in mice is poorly understood. Our previous work showed that pups with a Tbx1 heterozygous (HT) mutation, a genetic risk for autism spectrum disorder (ASD), emit altered call sequences that do not induce maternal approach behaviors in C57BL6/J mothers. Here, we tested how maternal approach behaviors induced by wild-type and HT USVs are influenced by the mother's experience in raising pups of these two genotypes. The results showed that wild-type USVs were effective in inducing maternal approach behaviors when mothers raised wild-type but not HT pups. The USVs of HT pups were ineffective regardless of whether mothers raised HT or wild-type pups. However, the sequence structure of pup USVs had no effect on the general, non-directional incentive motivation of maternal behaviors. Our data show how the mother's experience with a pup with a genetic risk for ASD alters the intrinsic incentive values of USV sequences in maternal approach behaviors.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Animais , Transtorno do Espectro Autista/genética , Comportamento de Escolha , Feminino , Humanos , Comportamento Materno , Camundongos , Mães , Ultrassom , Vocalização Animal
6.
Cells ; 9(11)2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-33203136

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease characterized by aberrant amyloid-ß (Aß) and hyperphosphorylated tau aggregation. We have previously investigated the involvement of SEPTIN family members in AD-related cellular processes and discovered a role for SEPTIN8 in the sorting and accumulation of ß-secretase. Here, we elucidated the potential role of SEPTIN5, an interaction partner of SEPTIN8, in the cellular processes relevant for AD, including amyloid precursor protein (APP) processing and the generation of Aß. The in vitro and in vivo studies both revealed that the downregulation of SEPTIN5 reduced the levels of APP C-terminal fragments (APP CTFs) and Aß in neuronal cells and in the cortex of Septin5 knockout mice. Mechanistic elucidation revealed that the downregulation of SEPTIN5 increased the degradation of APP CTFs, without affecting the secretory pathway-related trafficking or the endocytosis of APP. Furthermore, we found that the APP CTFs were degraded, to a large extent, via the autophagosomal pathway and that the downregulation of SEPTIN5 enhanced autophagosomal activity in neuronal cells as indicated by altered levels of key autophagosomal markers. Collectively, our data suggest that the downregulation of SEPTIN5 increases the autophagy-mediated degradation of APP CTFs, leading to reduced levels of Aß in neuronal cells.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Autofagia/fisiologia , Proteínas de Ciclo Celular/metabolismo , Septinas/metabolismo , Animais , Encéfalo/metabolismo , Proteínas de Ciclo Celular/genética , Endocitose/fisiologia , Humanos , Camundongos , Camundongos Knockout , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Fragmentos de Peptídeos/metabolismo , Transporte Proteico/fisiologia , Septinas/genética
8.
Front Neurol ; 11: 576029, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33613411

RESUMO

Background: With the growing momentum for the adoption of machine learning (ML) in medical field, it is likely that reliance on ML for imaging will become routine over the next few years. We have developed a software named BAAD, which uses ML algorithms for the diagnosis of Alzheimer's disease (AD) and prediction of mild cognitive impairment (MCI) progression. Methods: We constructed an algorithm by combining a support vector machine (SVM) to classify and a voxel-based morphometry (VBM) to reduce concerned variables. We grouped progressive MCI and AD as an AD spectrum and trained SVM according to this classification. We randomly selected half from the total 1,314 subjects of AD neuroimaging Initiative (ADNI) from North America for SVM training, and the remaining half were used for validation to fine-tune the model hyperparameters. We created two types of SVMs, one based solely on the brain structure (SVMst), and the other based on both the brain structure and Mini-Mental State Examination score (SVMcog). We compared the model performance with two expert neuroradiologists, and further evaluated it in test datasets involving 519, 592, 69, and 128 subjects from the Australian Imaging, Biomarker & Lifestyle Flagship Study of Aging (AIBL), Japanese ADNI, the Minimal Interval Resonance Imaging in AD (MIDIAD) and the Open Access Series of Imaging Studies (OASIS), respectively. Results: BAAD's SVMs outperformed radiologists for AD diagnosis in a structural magnetic resonance imaging review. The accuracy of the two radiologists was 57.5 and 70.0%, respectively, whereas, that of the SVMst was 90.5%. The diagnostic accuracy of the SVMst and SVMcog in the test datasets ranged from 88.0 to 97.1% and 92.5 to 100%, respectively. The prediction accuracy for MCI progression was 83.0% in SVMst and 85.0% in SVMcog. In the AD spectrum classified by SVMst, 87.1% of the subjects were Aß positive according to an AV-45 positron emission tomography. Similarly, among MCI patients classified for the AD spectrum, 89.5% of the subjects progressed to AD. Conclusion: Our ML has shown high performance in AD diagnosis and prediction of MCI progression. It outperformed expert radiologists, and is expected to provide support in clinical practice.

9.
Brain Tumor Pathol ; 35(4): 193-201, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29936560

RESUMO

Hemangioblastoma is composed of neoplastic stromal cells and a prominent capillary network. To date, the identity of stromal cells remains unclear. Mesenchymal stem cells can give rise to committed vascular progenitor cells, and ephrin-B2/EphB4 and Notch signaling have crucial roles in these steps. The aim of our study was to elucidate that stromal cells of central nervous system hemangioblastomas have mesenchymal stem cell-derived vascular progenitor cell properties. Ten hemangioblastomas were investigated immunohistochemically. CD44, a mesenchymal stem cell marker, was detected in stromal cells of all cases, suggesting that stromal cells have mesenchymal stem cell-like properties. Neither CD31 nor α-SMA was expressed in stromal cells, suggesting that stromal cells have not acquired differentiated vascular cell properties. Both ephrin-B2 and EphB4, immature vascular cell markers, were detected in stromal cells of all cases. Jagged1, Notch1, and Hesr2/Hey2, which are known to be detected in both immature endothelial cells and mural cells, were expressed in stromal cells of all cases. Notch3, which is known to be detected in differentiating mural cells, was also expressed in all cases. These results suggest that stromal cells also have vascular progenitor cell properties. In conclusion, stromal cells of hemangioblastomas exhibit mesenchymal stem cell-derived vascular progenitor cell properties.


Assuntos
Neoplasias do Sistema Nervoso Central/patologia , Hemangioblastoma/patologia , Células-Tronco Mesenquimais , Células-Tronco , Células Estromais/patologia , Adulto , Idoso , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Transformação Celular Neoplásica , Neoplasias do Sistema Nervoso Central/metabolismo , Células Endoteliais , Efrina-B2/metabolismo , Feminino , Hemangioblastoma/metabolismo , Humanos , Receptores de Hialuronatos/metabolismo , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Receptor Notch1/metabolismo , Receptor Notch3 , Proteínas Repressoras/metabolismo , Transdução de Sinais , Células Estromais/metabolismo , Adulto Jovem
10.
World Neurosurg ; 117: e187-e193, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29886300

RESUMO

OBJECTIVE: Hemangioblastomas (HBs) are benign vascular tumors of the central nervous system and histologically contain abundant microvessels. Therefore, they clinically exhibit vascular malformation-like characteristics. It has been described that endothelial-to-mesenchymal transition (EndMT) contributes to the pathogenesis of cerebral cavernous malformations. However, it remains unknown whether EndMT contributes to the pathogenesis of central nervous system HBs. The aim of our study was to investigate whether EndMT occurs in central nervous system HBs. METHODS: Ten central nervous system HBs were immunohistochemically investigated. RESULTS: Cluster of differentiation (CD) 31 (an endothelial marker) and EndMT markers, such as α-smooth muscle actin (a mesenchymal marker) and CD44 (a mesenchymal stem cell marker), were expressed in the endothelial layer of microvessels in all cases. These findings suggest that endothelial cells (ECs) of microvessels in central nervous system HBs have acquired mesenchymal and stem cell-like characteristics and undergone EndMT. In all cases, both ephrin-B2 and EphB4, which are not detected in adult normal brain vessels, were expressed in the endothelial layer of microvessels. These data suggest that ECs of microvessels in central nervous system HBs are immature or malformed cells and have both arterial and venous characteristics. CONCLUSIONS: To our knowledge, this is the first report showing the possibility that EndMT contributes to the pathogenesis of central nervous system HBs. It is likely that ECs of microvessels in central nervous system HBs are immature or malformed cells and have both arterial and venous characteristics. EndMT is expected to be a new therapeutic target in central nervous system HBs.


Assuntos
Neoplasias Cerebelares/etiologia , Transição Epitelial-Mesenquimal/fisiologia , Hemangioblastoma/etiologia , Neoplasias da Medula Espinal/etiologia , Adulto , Idoso , Endotélio Vascular/fisiologia , Feminino , Humanos , Receptores de Hialuronatos/metabolismo , Imuno-Histoquímica , Masculino , Microvasos/fisiologia , Pessoa de Meia-Idade , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Receptor Notch1/metabolismo , Transdução de Sinais/fisiologia
11.
Chemistry ; 23(62): 15713-15720, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-28815766

RESUMO

With a view to developing a theranostic nanomedicine for targeted drug delivery systems visible by magnetic resonance (MR) imaging, robust metal-free magnetic nanoemulsions (mean particle size less than 20 nm) consisting of a biocompatible surfactant and hydrophobic, low molecular weight 2,2,5-trimethyl-5-(4-alkoxy)phenylpyrrolidine-N-oxyl radicals were prepared in pH 7.4 phosphate-buffered saline (PBS). The structure of the nanoemulsions was characterized by electron paramagnetic resonance spectroscopy, and dynamic light scattering and small-angle neutron-scattering measurements. The nanoemulsions showed high colloidal stability, low cytotoxicity, enough reduction resistance to excess ascorbic acid, and sufficient contrast enhancement in the proton longitudinal relaxation time (T1 ) weighted MR images in PBS in vitro (and preliminarily in vivo). Furthermore, the hydrophobic anticancer drug paclitaxel could be encapsulated inside the nanoparticles, and the resulting paclitaxel-loaded nanoemulsions were efficiently incorporated into HeLa cells to suppress cell growth.


Assuntos
Antineoplásicos Fitogênicos/química , Portadores de Fármacos/química , Nanopartículas de Magnetita/química , Óxidos de Nitrogênio/química , Paclitaxel/química , Animais , Antineoplásicos Fitogênicos/toxicidade , Ácido Ascórbico/química , Encéfalo/diagnóstico por imagem , Proliferação de Células/efeitos dos fármacos , Difusão Dinâmica da Luz , Espectroscopia de Ressonância de Spin Eletrônica , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Imageamento por Ressonância Magnética , Camundongos , Peso Molecular , Difração de Nêutrons , Oxirredução , Paclitaxel/toxicidade , Tamanho da Partícula , Espalhamento a Baixo Ângulo
12.
Neurosurgery ; 81(1): 176-183, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28368503

RESUMO

BACKGROUND: The analysis of gene-targeted mouse mutants has demonstrated that endothelial-to-mesenchymal transition (EndMT) is crucial to the onset and progression of cerebral cavernous malformations (CMs). It has also been shown that Notch and ephrin/Eph signaling are involved in EndMT. However, their roles in the pathogenesis of human intracranial CMs remain unclear. OBJECTIVE: To elucidate the contribution of EndMT, the Notch pathway, and ephrin-B2/EphB4 signaling to the pathogenesis of human intracranial CMs. METHODS: Eight human intracranial CMs (5 cerebral and 3 orbital CMs) were immunohistochemically investigated. RESULTS: CD31 (an endothelial marker) and EndMT markers, such as α-smooth muscle actin (a mesenchymal marker) and CD44 (a mesenchymal stem cell marker), were expressed in the endothelial layer of vascular sinusoids in all cases, suggesting that endothelial cells (ECs) have acquired mesenchymal and stem-cell-like characteristics and undergone EndMT in all cerebral and orbital CMs. EndMT was observed in about 70% and 35% of ECs in cerebral and orbital CMs, respectively. In all cases, Notch3 was expressed in the endothelial layer, indicating that ECs of vascular sinusoids have acquired mesenchymal features. In all cases, both ephrin-B2 and EphB4 were detected in the endothelial layer, suggesting that ECs of vascular sinusoids are immature or malformed cells and have both arterial and venous characteristics. CONCLUSION: EndMT plays a critical role in the pathogenesis of human cerebral and orbital CMs. Modulating EndMT is expected to be a new therapeutic strategy for cerebral and orbital CMs.


Assuntos
Neoplasias do Sistema Nervoso Central/etiologia , Células Endoteliais/fisiologia , Hemangioma Cavernoso do Sistema Nervoso Central/etiologia , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Neoplasias Orbitárias/etiologia , Actinas/metabolismo , Adolescente , Adulto , Idoso , Biomarcadores/metabolismo , Neoplasias do Sistema Nervoso Central/metabolismo , Neoplasias do Sistema Nervoso Central/patologia , Criança , Efrina-B2/metabolismo , Feminino , Humanos , Receptores de Hialuronatos/metabolismo , Masculino , Pessoa de Meia-Idade , Neoplasias Orbitárias/patologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Receptor EphB4/metabolismo , Receptor Notch3/metabolismo , Transdução de Sinais , Adulto Jovem
13.
Sci Rep ; 7: 39818, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28045130

RESUMO

It has been contended that any observed difference of the corpus callosum (CC) size between men and women is not sex-related but brain-size-related. A recent report, however, showed that the midsagittal CC area was significantly larger in women in 37 brain-size-matched pairs of normal young adults. Since this constituted strong evidence of sexual dimorphism and was obtained from publicly available data in OASIS, we examined volume differences within the CC and in other white matter using voxel-based morphometry (VBM). We created a three-dimensional region of interest of the CC and measured its volume. The VBM statistics were analyzed by permutation test and threshold-free cluster enhancement (TFCE) with the significance levels at FWER < 0.05. The CC volume was significantly larger in women in the same 37 brain-size-matched pairs. We found that the CC genu was the subregion showing the most significant sex-related difference. We also found that white matter in the bilateral anterior frontal regions and the left lateral white matter near to Broca's area were larger in women, whereas there were no significant larger regions in men. Since we used brain-size-matched subjects, our results gave strong volumetric evidence of localized sexual dimorphism of white matter.


Assuntos
Corpo Caloso/diagnóstico por imagem , Caracteres Sexuais , Substância Branca/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Tamanho do Órgão , Fatores Sexuais
15.
PLoS One ; 10(6): e0128288, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26038891

RESUMO

Glioblastoma multiforme (GBM) is associated with high mortality due to infiltrative growth and recurrence. Median survival of the patients is less than 15 months, increasing requirements for new therapies. We found that both arsenic trioxide and 10058F4, an inhibitor of Myc, induced differentiation of cancer stem-like cells (CSC) of GBM and that arsenic trioxide drastically enhanced the anti-proliferative effect of 10058F4 but not apoptotic effects. EGFR-driven genetically engineered GBM mouse model showed that this cooperative effect is higher in EGFRvIII-expressing INK4a/Arf-/- neural stem cells (NSCs) than in control wild type NSCs. In addition, treatment of GBM CSC xenografts with arsenic trioxide and 10058F4 resulted in significant decrease in tumor growth and increased differentiation with concomitant decrease of proneural and mesenchymal GBM CSCs in vivo. Our study was the first to evaluate arsenic trioxide and 10058F4 interaction in GBM CSC differentiation and to assess new opportunities for arsenic trioxide and 10058F4 combination as a promising approach for future differentiation therapy of GBM.


Assuntos
Arsenicais/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Óxidos/uso terapêutico , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Tiazóis/uso terapêutico , Idoso , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Trióxido de Arsênio , Neoplasias Encefálicas/patologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Progressão da Doença , Receptores ErbB/metabolismo , Feminino , Glioblastoma/patologia , Proteínas Hedgehog/metabolismo , Humanos , Imageamento por Ressonância Magnética , Masculino , Camundongos SCID , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tiazóis/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Front Neurosci ; 9: 74, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25805966

RESUMO

Schizophrenia is a complex mental disorder that displays behavioral deficits such as decreased sensory gating, reduced social interaction and working memory deficits. The neurodevelopmental model is one of the widely accepted hypotheses of the etiology of schizophrenia. Subtle developmental abnormalities of the brain which stated long before the onset of clinical symptoms are thought to lead to the emergence of illness. Schizophrenia has strong genetic components but its underlying molecular pathogenesis is still poorly understood. Genetic linkage and association studies have identified several genes involved in neuronal migrations as candidate susceptibility genes for schizophrenia, although their effect size is small. Recent progress in copy number variation studies also has identified much higher risk loci such as 22q11. Based on these genetic findings, we are now able to utilize genetically-defined animal models. Here we summarize the results of neurodevelopmental and behavioral analysis of genetically-defined animal models. Furthermore, animal model experiments have demonstrated that embryonic and perinatal neurodevelopmental insults in neurogenesis and neuronal migrations cause neuronal functional and behavioral deficits in affected adult animals, which are similar to those of schizophrenic patients. However, these findings do not establish causative relationship. Genetically-defined animal models are a critical approach to explore the relationship between neuronal migration abnormalities and behavioral abnormalities relevant to schizophrenia.

17.
Mol Neuropsychiatry ; 1(2): 105-15, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27602360

RESUMO

The human Nogo-66 receptor 1 (NgR1) gene, also termed Nogo receptor 1 or reticulon 4 receptor (RTN4R) and located within 22q11.2, inhibits axonal growth and synaptic plasticity. Patients with the 22q11.2 deletion syndrome show multiple changes in brain morphology, with corpus callosum (CC) abnormalities being among the most prominent and frequently reported. Thus, we hypothesized that, in humans, NgR1 may be involved in CC formation. We focused on rs701428, a single nucleotide polymorphism of NgR1, which is associated with schizophrenia. We investigated the effects of the rs701428 genotype on CC structure in 50 healthy participants using magnetic resonance imaging. Polymorphism of rs701428 was associated with CC structural variation in healthy participants; specifically, minor A allele carriers had larger whole CC volumes and lower radial diffusivity in the central CC region compared with major G allele homozygous participants. Furthermore, we showed that the NgR1 3' region, which contains rs701428, is a neuronal activity-dependent enhancer, and that the minor A allele of rs701428 is susceptible to regulation of enhancer activity by MYBL2. Our results suggest that NgR1 can influence the macro- and microstructure of the white matter of the human brain.

18.
Proc Natl Acad Sci U S A ; 110(43): 17552-7, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-24101523

RESUMO

22q11 deletion syndrome (22q11DS) frequently accompanies psychiatric conditions, some of which are classified as schizophrenia and bipolar disorder in the current diagnostic categorization. However, it remains elusive how the chromosomal microdeletion leads to the mental manifestation at the mechanistic level. Here we show that a 22q11DS mouse model with a deletion of 18 orthologous genes of human 22q11 (Df1/+ mice) has deficits in migration of cortical interneurons and hippocampal dentate precursor cells. Furthermore, Df1/+ mice show functional defects in Chemokine receptor 4/Chemokine ligand 12 (Cxcr4/Cxcl12; Sdf1) signaling, which reportedly underlie interneuron migration. Notably, the defects in interneuron progenitors are rescued by ectopic expression of Dgcr8, one of the genes in 22q11 microdeletion. Furthermore, heterozygous knockout mice for Dgcr8 show similar neurodevelopmental abnormalities as Df1/+ mice. Thus, Dgcr8-mediated regulation of microRNA is likely to underlie Cxcr4/Cxcl12 signaling and associated neurodevelopmental defects. Finally, we observe that expression of CXCL12 is decreased in olfactory neurons from sporadic cases with schizophrenia compared with normal controls. Given the increased risk of 22q11DS in schizophrenia that frequently shows interneuron abnormalities, the overall study suggests that CXCR4/CXCL12 signaling may represent a common downstream mediator in the pathophysiology of schizophrenia and related mental conditions.


Assuntos
Síndrome da Deleção 22q11/genética , Quimiocina CXCL12/genética , Modelos Animais de Doenças , MicroRNAs/genética , Receptores CXCR4/genética , Transdução de Sinais/genética , Síndrome da Deleção 22q11/metabolismo , Animais , Células Cultivadas , Quimiocina CXCL12/metabolismo , Giro Denteado/metabolismo , Giro Denteado/patologia , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Imuno-Histoquímica , Interneurônios/metabolismo , Interneurônios/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/metabolismo , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Receptores CXCR4/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Neurosci Res ; 75(3): 204-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23396245

RESUMO

Treatment with DAPT, an inhibitor of the Notch-activating enzyme, γ-secretase is known to reduce damage to ischemic brain. However, the molecular mechanisms supporting this therapeutic effect are not fully understood. Here we demonstrated that Notch/RBP-J signaling is activated in NG2(+) glial progenitors and reactive astrocytes such as GFAP(+) cells, Nestin(+) cells and RC2(+) cells, using Notch/RBP-J signaling reporter mice. 3-day DAPT treatment reduced the number of reactive astrocytes but not NG2(+) glial progenitors. BrdU labeling experiments have shown that this reduction was due to decreased proliferation of reactive astrocytes. DAPT inhibited nuclear-translocation of Olig2, which is indispensable for proliferation and differentiation of reactive astrocytes. These findings suggest that Notch signaling might promote proliferation and differentiation of reactive astrocytes through the regulation of nucleo-cytoplasmic translocation of Olig2.


Assuntos
Astrócitos/efeitos dos fármacos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/fisiologia , Neuroglia/metabolismo , Receptores Notch/fisiologia , Transdução de Sinais/fisiologia , Acidente Vascular Cerebral/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Animais , Astrócitos/classificação , Astrócitos/patologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Diferenciação Celular/fisiologia , Núcleo Celular/patologia , Proliferação de Células , Citoplasma/patologia , Dipeptídeos/administração & dosagem , Dipeptídeos/farmacologia , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/biossíntese , Fator de Transcrição 2 de Oligodendrócitos , Transporte Proteico/fisiologia , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/patologia
20.
PLoS One ; 8(1): e53490, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23308235

RESUMO

We describe a novel spontaneous mouse mutant, laggard (lag), characterized by a flat head, motor impairment and growth retardation. The mutation is inherited as an autosomal recessive trait, and lag/lag mice suffer from cerebellar ataxia and die before weaning. lag/lag mice exhibit a dramatic reduction in brain size and slender optic nerves. By positional cloning, we identify a splice site mutation in Kif14. Transgenic complementation with wild-type Kif14-cDNA alleviates ataxic phenotype in lag/lag mice. To further confirm that the causative gene is Kif14, we generate Kif14 knockout mice and find that all of the phenotypes of Kif14 knockout mice are similar to those of lag/lag mice. The main morphological abnormality of lag/lag mouse is severe hypomyelination in central nervous system. The lag/lag mice express an array of myelin-related genes at significantly reduced levels. The disrupted cytoarchitecture of the cerebellar and cerebral cortices appears to result from apoptotic cell death. Thus, we conclude that Kif14 is essential for the generation and maturation of late-developing structures such as the myelin sheath, cerebellar and cerebral cortices. So far, no Kif14-deficient mice or mutation in Kif14 has ever been reported and we firstly define the biological function of Kif14 in vivo. The discovery of mammalian models, laggard, has opened up horizons for researchers to add more knowledge regarding the etiology and pathology of brain malformation.


Assuntos
Ataxia Cerebelar/genética , Cerebelo/patologia , Córtex Cerebral/patologia , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Cinesinas/genética , Doenças Mitocondriais/genética , Mutação , Bainha de Mielina/genética , Transtornos Psicomotores/genética , Sistemas de Transporte de Aminoácidos Acídicos/deficiência , Sistemas de Transporte de Aminoácidos Acídicos/genética , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animais , Antiporters/deficiência , Antiporters/genética , Antiporters/metabolismo , Apoptose , Sequência de Bases , Ataxia Cerebelar/metabolismo , Ataxia Cerebelar/patologia , Cerebelo/metabolismo , Córtex Cerebral/metabolismo , Feminino , Teste de Complementação Genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/metabolismo , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/patologia , Masculino , Camundongos , Camundongos Transgênicos , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Dados de Sequência Molecular , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Fenótipo , Isoformas de Proteínas/genética , Transtornos Psicomotores/metabolismo , Transtornos Psicomotores/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA