Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neuroscience ; 421: 1-16, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31682822

RESUMO

The endocannabinoid system modulates synaptic transmission, controls neuronal excitability, and is involved in various brain functions including learning and memory. 2-arachidonoylglycerol, a major endocannabinoid produced by diacylglycerol lipase-α (DGLα), is released from postsynaptic neurons, retrogradely activates presynaptic CB1 cannabinoid receptors, and induces short-term or long-term synaptic plasticity. To examine whether and how the endocannabinoid system contributes to reward-based learning of a motor sequence, we subjected male CB1-knockout (KO) and DGLα-KO mice to three types of operant lever-press tasks. First, we trained mice to press one of three levers labeled A, B, and C for a food reward (one-lever task). Second, we trained mice to press the three levers in the order of A, B, and C (three-lever task). Third, the order of the levers was reversed to C, B, and A (reverse three-lever task). We found that CB1-KO mice and DGLα-KO mice exhibited essentially the same deficits in the operant lever-press tasks. In the one-lever task, both strains of knockout mice showed a slower rate of learning to press a lever for food. In the three-lever task, both strains of knockout mice showed a slower rate of learning of the motor sequence. In the reverse three-lever task, both strains of knockout mice needed more lever presses for reversal learning. These results suggest that the endocannabinoid system facilitates reward-based learning of a motor sequence by conferring the flexibility with which animals can switch between strategies.


Assuntos
Ácidos Araquidônicos/deficiência , Endocanabinoides/fisiologia , Glicerídeos/deficiência , Aprendizagem/fisiologia , Receptor CB1 de Canabinoide/deficiência , Recompensa , Animais , Endocanabinoides/deficiência , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
2.
J Nutr Biochem ; 39: 110-116, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27833051

RESUMO

Theobromine, which is a caffeine derivative, is the primary methylxanthine produced by Theobroma cacao. Theobromine works as a phosphodiesterase (PDE) inhibitor to increase intracellular cyclic adenosine monophosphate (cAMP). cAMP activates the cAMP-response element-binding protein (CREB), which is involved in a large variety of brain processes, including the induction of the brain-derived neurotrophic factor (BDNF). BDNF supports cell survival and neuronal functions, including learning and memory. Thus, cAMP/CREB/BDNF pathways play an important role in learning and memory. Here, we investigated whether orally administered theobromine could act as a PDE inhibitor centrally and affect cAMP/CREB/BDNF pathways and learning behavior in mice. The mice were divided into two groups. The control group (CN) was fed a normal diet, whereas the theobromine group (TB) was fed a diet supplemented with 0.05% theobromine for 30 days. We measured the levels of theobromine, phosphorylated vasodilator-stimulated phosphoprotein (p-VASP), phosphorylated CREB (p-CREB), and BDNF in the brain. p-VASP was used as an index of cAMP increases. Moreover, we analyzed the performance of the mice on a three-lever motor learning task. Theobromine was detectable in the brains of TB mice. The brain levels of p-VASP, p-CREB, and BDNF were higher in the TB mice compared with those in the CN mice. In addition, the TB mice performed better on the three-lever task than the CN mice did. These results strongly suggested that orally administered theobromine acted as a PDE inhibitor in the brain, and it augmented the cAMP/CREB/BDNF pathways and motor learning in mice.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Aprendizagem , Teobromina/farmacologia , Animais , Glicemia/metabolismo , Peso Corporal , Fator Neurotrófico Derivado do Encéfalo/genética , Cacau/química , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , AMP Cíclico/genética , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Masculino , Memória , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Inibidores de Fosfodiesterase/farmacologia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Extratos Vegetais/farmacologia , Teobromina/sangue , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA