Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell ; 185(5): 881-895.e20, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35216672

RESUMO

Post-acute sequelae of COVID-19 (PASC) represent an emerging global crisis. However, quantifiable risk factors for PASC and their biological associations are poorly resolved. We executed a deep multi-omic, longitudinal investigation of 309 COVID-19 patients from initial diagnosis to convalescence (2-3 months later), integrated with clinical data and patient-reported symptoms. We resolved four PASC-anticipating risk factors at the time of initial COVID-19 diagnosis: type 2 diabetes, SARS-CoV-2 RNAemia, Epstein-Barr virus viremia, and specific auto-antibodies. In patients with gastrointestinal PASC, SARS-CoV-2-specific and CMV-specific CD8+ T cells exhibited unique dynamics during recovery from COVID-19. Analysis of symptom-associated immunological signatures revealed coordinated immunity polarization into four endotypes, exhibiting divergent acute severity and PASC. We find that immunological associations between PASC factors diminish over time, leading to distinct convalescent immune states. Detectability of most PASC factors at COVID-19 diagnosis emphasizes the importance of early disease measurements for understanding emergent chronic conditions and suggests PASC treatment strategies.


Assuntos
COVID-19/complicações , COVID-19/diagnóstico , Convalescença , Imunidade Adaptativa/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Autoanticorpos/sangue , Biomarcadores/metabolismo , Proteínas Sanguíneas/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , COVID-19/imunologia , COVID-19/patologia , COVID-19/virologia , Progressão da Doença , Feminino , Humanos , Imunidade Inata/genética , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Fatores de Risco , SARS-CoV-2/isolamento & purificação , Transcriptoma , Adulto Jovem , Síndrome de COVID-19 Pós-Aguda
2.
medRxiv ; 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32793919

RESUMO

T cells are involved in the early identification and clearance of viral infections and also support the development of antibodies by B cells. This central role for T cells makes them a desirable target for assessing the immune response to SARS-CoV-2 infection. Here, we combined two high-throughput immune profiling methods to create a quantitative picture of the T-cell response to SARS-CoV-2. First, at the individual level, we deeply characterized 3 acutely infected and 58 recovered COVID-19 subjects by experimentally mapping their CD8 T-cell response through antigen stimulation to 545 Human Leukocyte Antigen (HLA) class I presented viral peptides (class II data in a forthcoming study). Then, at the population level, we performed T-cell repertoire sequencing on 1,815 samples (from 1,521 COVID-19 subjects) as well as 3,500 controls to identify shared "public" T-cell receptors (TCRs) associated with SARS-CoV-2 infection from both CD8 and CD4 T cells. Collectively, our data reveal that CD8 T-cell responses are often driven by a few immunodominant, HLA-restricted epitopes. As expected, the T-cell response to SARS-CoV-2 peaks about one to two weeks after infection and is detectable for at least several months after recovery. As an application of these data, we trained a classifier to diagnose SARS-CoV-2 infection based solely on TCR sequencing from blood samples, and observed, at 99.8% specificity, high early sensitivity soon after diagnosis (Day 3-7 = 85.1% [95% CI = 79.9-89.7]; Day 8-14 = 94.8% [90.7-98.4]) as well as lasting sensitivity after recovery (Day 29+/convalescent = 95.4% [92.1-98.3]). These results demonstrate an approach to reliably assess the adaptive immune response both soon after viral antigenic exposure (before antibodies are typically detectable) as well as at later time points. This blood-based molecular approach to characterizing the cellular immune response has applications in clinical diagnostics as well as in vaccine development and monitoring.

3.
Nature ; 560(7716): 107-111, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30022165

RESUMO

Tissue-specific autoimmunity occurs when selected antigens presented by susceptible alleles of the major histocompatibility complex are recognized by T cells. However, the reason why certain specific self-antigens dominate the response and are indispensable for triggering autoreactivity is unclear. Spontaneous presentation of insulin is essential for initiating autoimmune type 1 diabetes in non-obese diabetic mice1,2. A major set of pathogenic CD4 T cells specifically recognizes the 12-20 segment of the insulin B-chain (B:12-20), an epitope that is generated from direct presentation of insulin peptides by antigen-presenting cells3,4. These T cells do not respond to antigen-presenting cells that have taken up insulin that, after processing, leads to presentation of a different segment representing a one-residue shift, B:13-214. CD4 T cells that recognize B:12-20 escape negative selection in the thymus and cause diabetes, whereas those that recognize B:13-21 have only a minor role in autoimmunity3-5. Although presentation of B:12-20 is evident in the islets3,6, insulin-specific germinal centres can be formed in various lymphoid tissues, suggesting that insulin presentation is widespread7,8. Here we use live imaging to document the distribution of insulin recognition by CD4 T cells throughout various lymph nodes. Furthermore, we identify catabolized insulin peptide fragments containing defined pathogenic epitopes in ß-cell granules from mice and humans. Upon glucose challenge, these fragments are released into the circulation and are recognized by CD4 T cells, leading to an activation state that results in transcriptional reprogramming and enhanced diabetogenicity. Therefore, a tissue such as pancreatic islets, by releasing catabolized products, imposes a constant threat to self-tolerance. These findings reveal a self-recognition pathway underlying a primary autoantigen and provide a foundation for assessing antigenic targets that precipitate pathogenic outcomes by systemically sensitizing lymphoid tissues.


Assuntos
Exocitose , Insulina/metabolismo , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Tecido Linfoide/metabolismo , Fragmentos de Peptídeos/metabolismo , Adulto , Animais , Apresentação de Antígeno/imunologia , Grânulos Citoplasmáticos/química , Grânulos Citoplasmáticos/efeitos dos fármacos , Grânulos Citoplasmáticos/metabolismo , Epitopos/imunologia , Exocitose/efeitos dos fármacos , Feminino , Glucose/metabolismo , Glucose/farmacologia , Humanos , Insulina/sangue , Insulina/química , Insulina/imunologia , Ilhotas Pancreáticas/efeitos dos fármacos , Tecido Linfoide/citologia , Tecido Linfoide/efeitos dos fármacos , Tecido Linfoide/imunologia , Masculino , Camundongos Endogâmicos NOD , Pessoa de Meia-Idade , Fragmentos de Peptídeos/sangue , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/imunologia , Fenótipo , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
4.
Eur J Immunol ; 44(5): 1313-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24515814

RESUMO

Medullary thymic epithelial cells (mTECs) facilitate the deletion of developing self-reactive T cells by displaying a diverse repertoire of tissue-specific antigens, a process which largely depends on the expression of the autoimmune regulator (Aire) gene. Mature microRNAs (miRNAs) that regulate gene expression post-transcriptionally are generated in a multistep process. The microprocessor complex, including DGCR8, cleaves canonical miRNAs, but alternative DGCR8-independent miRNA biogenesis pathways exist as well. In order to study the role of canonical miRNAs in thymic epithelial cells (TECs), we ablated Dgcr8 using a FoxN1-Cre transgene. We report that DGCR8-deficient TECs are unable to maintain proper thymic architecture and exhibit a dramatic loss of thymic cellularity. Importantly, DGCR8-deficient TECs develop a severe loss of Aire(+) mTECs. Using a novel immunization approach to amplify and detect self-reactive T cells within a polyclonal TCR repertoire, we demonstrate a link between the loss of Aire expression in DGCR8-deficient TECs and the breakdown of negative selection in the thymus. Thus, DGCR8 and canonical miRNAs are important in TECs for supporting central tolerance.


Assuntos
Células Epiteliais/imunologia , Regulação da Expressão Gênica/imunologia , Tolerância Imunológica/fisiologia , MicroRNAs/imunologia , Timo/imunologia , Fatores de Transcrição/imunologia , Animais , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/genética , Camundongos , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/imunologia , Proteínas de Ligação a RNA/metabolismo , Timo/citologia , Timo/metabolismo , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Proteína AIRE
5.
Proc Natl Acad Sci U S A ; 109(20): 7847-52, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22552229

RESUMO

The autoimmune regulator (Aire) plays a critical role in central tolerance by promoting the display of tissue-specific antigens in the thymus. To study the influence of Aire on thymic selection in a physiological setting, we used tetramer reagents to detect autoreactive T cells specific for the Aire-dependent tissue-specific antigen interphotoreceptor retinoid-binding protein (IRBP), in the polyclonal repertoire. Two class II tetramer reagents were designed to identify T cells specific for two different peptide epitopes of IRBP. Analyses of the polyclonal T-cell repertoire showed a high frequency of activated T cells specific for both IRBP tetramers in Aire(-/-) mice, but not in Aire(+/+) mice. Surprisingly, although one tetramer-binding T-cell population was efficiently deleted in the thymus in an Aire-dependent manner, the second tetramer-binding population was not deleted and could be detected in both the Aire(-/-) and Aire(+/+) T-cell repertoires. We found that Aire-dependent thymic deletion of IRBP-specific T cells relies on intercellular transfer of IRBP between thymic stroma and bone marrow-derived antigen-presenting cells. Furthermore, our data suggest that Aire-mediated deletion relies not only on thymic expression of IRBP, but also on proper antigen processing and presentation of IRBP by thymic antigen-presenting cells.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Deleção Clonal/imunologia , Proteínas do Olho/imunologia , Proteínas de Ligação ao Retinol/imunologia , Linfócitos T/imunologia , Timo/imunologia , Fatores de Transcrição/imunologia , Uveíte/imunologia , Animais , Células Apresentadoras de Antígenos/metabolismo , Deleção Clonal/genética , Proteínas do Olho/metabolismo , Imunização , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Ligação ao Retinol/metabolismo , Estatísticas não Paramétricas , Linfócitos T/metabolismo , Timo/citologia , Fatores de Transcrição/genética , Uveíte/patologia , Proteína AIRE
6.
Immunol Cell Biol ; 89(1): 40-4, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21079643

RESUMO

In his clonal selection theory, Frank Macfarlane Burnet predicted that autoreactive lymphocytes are deleted to prevent autoimmunity. This and other principles of lymphocyte behavior outlined by Burnet guided many studies that lead to our current understanding of thymic selection. Thus, when the genetic mutation responsible for autoimmune polyglandular syndrome type 1 was mapped to the autoimmune regulator (AIRE) gene, and Aire was found to be highly expressed in thymic epithelium, studying the role of Aire in negative selection made sense in the context of modern models of thymic selection. We now know Aire is a transcription factor required for the expression of many tissue-specific antigens (TSAs) in the thymus. In the absence of functional Aire, human patients and mice develop multi-organ autoimmune disease because of a defect in thymic negative selection. In addition to its role in the thymus, recent work in our lab suggests that extrathymic Aire-expressing cells have an important role in the clonal deletion of autoreactive CD8+ T cells. In this review, we summarize the latest studies on thymic and peripheral Aire-expressing cells, as well as other TSA-expressing stromal cell populations in peripheral lymphoid organs. We also discuss theoretical differences in thymic and peripheral Aire function that warrant further studies.


Assuntos
Deleção Clonal/imunologia , Fatores de Transcrição/metabolismo , Animais , Autoimunidade/imunologia , Deleção Clonal/genética , Humanos , Tolerância Imunológica/genética , Tolerância Imunológica/imunologia , Poliendocrinopatias Autoimunes/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Timo/imunologia , Timo/metabolismo , Fatores de Transcrição/genética , Proteína AIRE
7.
J Clin Invest ; 120(6): 1925-38, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20440077

RESUMO

Persistent viral infections are often associated with inefficient T cell responses and sustained high-level expression of inhibitory receptors, such as the NK cell receptor 2B4 (also known as CD244), on virus-specific T cells. However, the role of 2B4 in T cell dysfunction is undefined, and it is unknown whether NK cells contribute to regulation of these processes. We show here that persistent lymphocytic choriomeningitis virus (LCMV) infection of mice lacking 2B4 resulted in diminished LCMV-specific CD8+ T cell responses, prolonged viral persistence, and spleen and thymic pathologies that differed from those observed in infected wild-type mice. Surprisingly, these altered phenotypes were not caused by 2B4 deficiency in T cells. Rather, the entire and long-lasting pathology and viral persistence were regulated by 2B4-deficient NK cells acting early in infection. In the absence of 2B4, NK cells lysed activated (defined as CD44hi) but not naive (defined as CD44lo) CD8+ T cells in a perforin-dependent manner in vitro and in vivo. These results illustrate the importance of NK cell self-tolerance to activated CD8+ T cells and demonstrate how an apparent T cell-associated persistent infection can actually be regulated by NK cells.


Assuntos
Células Matadoras Naturais/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Linfócitos T/imunologia , Animais , Complexo CD3/imunologia , Complexo CD3/metabolismo , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/virologia , Coriomeningite Linfocítica/metabolismo , Coriomeningite Linfocítica/virologia , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Subfamília D de Receptores Semelhantes a Lectina de Células NK , Perforina , Baço/imunologia , Baço/metabolismo , Baço/virologia , Linfócitos T/metabolismo , Linfócitos T/virologia
8.
Blood ; 110(6): 2020-3, 2007 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-17537992

RESUMO

2B4 (CD244) and its ligand, CD48, are expressed on all natural killer (NK) cells. In studies using 2B4-deficient, CD48-deficient, or wild-type NK cells with blocking antibodies, we found that in the absence of 2B4-CD48 interactions, activated murine NK cells kill each other. We also show that NK-NK fratricide in the absence of 2B4-CD48 interaction is dependent on perforin both in vitro and in vivo. 2B4 has been reported to have activating, costimulatory, and inhibitory functions on murine NK cells. 2B4-mediated inhibition of NK-cell fratricide explains some of the paradoxes of 2B4 function reported in studies of murine NK cells. We show that in the absence of 2B4 signaling, activated NK cells have defective cytotoxicity and proliferation because of fratricide and not due to the absence of a 2B4-dependent activation signal.


Assuntos
Antígenos CD/fisiologia , Proliferação de Células , Sobrevivência Celular , Células Matadoras Ativadas por Linfocina/imunologia , Células Matadoras Naturais/imunologia , Glicoproteínas de Membrana/fisiologia , Receptores Imunológicos/fisiologia , Animais , Antígenos CD/genética , Antígeno CD48 , Cromo/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/fisiologia , Células Matadoras Ativadas por Linfocina/metabolismo , Células Matadoras Naturais/metabolismo , Ativação Linfocitária/genética , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Neoplasias/genética , Neoplasias/imunologia , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/fisiologia , Receptores Imunológicos/genética , Família de Moléculas de Sinalização da Ativação Linfocitária , Microglobulina beta-2/genética , Microglobulina beta-2/fisiologia
9.
J Immunother ; 27(5): 405-18, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15314550

RESUMO

T-cell receptor engagement and accompanying costimulatory signals control the level of activation and functional potential of individual T cells. The authors previously developed a novel technology in which human T cells are activated and expanded in culture ex vivo using anti-CD3 and anti-CD28 monoclonal antibodies covalently linked to superparamagnetic beads (Xcyte Dynabeads). In this study the addition of N-acetyl L-cysteine (NAC) to the cultures markedly increased the expansion of T cells from human peripheral blood mononuclear cells without diminishing cell function. NAC increased the rate of T-cell division, reduced apoptosis, and increased the percentage of antigen-specific memory T cells in the cultures. The effect of varying the ratio of beads to T cells (1:10-10:1) at culture initiation was also evaluated. Polyclonal T cells were expanded at all bead-to-T cell ratios tested (range 1:10-10:1). While high bead-to-T cell ratios (5:1 and 10:1) deleted, low ratios (1:10 and 1:5) preserved memory T cells directed against cytomegalovirus, Epstein-Barr virus, and influenza virus antigens. Adding more anti-CD3/anti-CD28 beads during the culture led to further expansion of T cells. Experiments also revealed that reducing the amount of anti-CD3 antibodies relative to the amount of anti-CD28 antibodies on the beads favored the proliferation of antigen-specific T cells. In summary, these data indicate that T cell-stimulating effects of anti-CD3/anti-CD28 beads can be further manipulated to control the expansion of antigen-specific memory T cells and can be used to rapidly expand antigen-specific T cells ex vivo for potential clinical applications.


Assuntos
Antígenos CD28/imunologia , Complexo CD3/imunologia , Técnicas de Cultura de Células/métodos , Ativação Linfocitária/imunologia , Linfócitos T/citologia , Acetilcisteína/farmacologia , Citometria de Fluxo , Humanos , Ativação Linfocitária/efeitos dos fármacos , Magnetismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA