Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
MAGMA ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581455

RESUMO

OBJECTIVE: To clarify the relationship between myelin water fraction (MWF) and R1⋅R2* and to develop a method to calculate MWF directly from parameters derived from QPM, i.e., MWF converted from QPM (MWFQPM). MATERIALS AND METHODS: Subjects were 12 healthy volunteers. On a 3 T MR scanner, dataset was acquired using spoiled gradient-echo sequence for QPM. MWF and R1⋅R2* maps were derived from the multi-gradient-echo (mGRE) dataset. Volume-of-interest (VOI) analysis using the JHU-white matter (WM) atlas was performed. All the data in the 48 WM regions measured VOI were plotted, and quadratic polynomial approximations of each region were derived from the relationship between R1·R2* and the two-pool model-MWF. The R1·R2* map was converted to MWFQPM map. MWF atlas template was generated using converted to MWF from R1·R2* per WM region. RESULTS: The mean MWF and R1·R2* values for the 48 WM regions were 11.96 ± 6.63%, and 19.94 ± 4.59 s-2, respectively. A non-linear relationship in 48 regions of the WM between MWF and R1·R2* values was observed by quadratic polynomial approximation (R2 ≥ 0.963, P < 0.0001). DISCUSSION: MWFQPM map improved image quality compared to the mGRE-MWF map. Myelin water atlas template derived from MWFQPM may be generated with combined multiple WM regions.

2.
BJR Open ; 6(1): tzad003, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38352183

RESUMO

Objectives: In a clinical study, diffusion kurtosis imaging (DKI) has been used to visualize and distinguish white matter (WM) structures' details. The purpose of our study is to evaluate and compare the diffusion tensor imaging (DTI) and DKI parameter values to obtain WM structure differences of healthy subjects. Methods: Thirteen healthy volunteers (mean age, 25.2 years) were examined in this study. On a 3-T MRI system, diffusion dataset for DKI was acquired using an echo-planner imaging sequence, and T1-weghted (T1w) images were acquired. Imaging analysis was performed using Functional MRI of the brain Software Library (FSL). First, registration analysis was performed using the T1w of each subject to MNI152. Second, DTI (eg, fractional anisotropy [FA] and each diffusivity) and DKI (eg, mean kurtosis [MK], radial kurtosis [RK], and axial kurtosis [AK]) datasets were applied to above computed spline coefficients and affine matrices. Each DTI and DKI parameter value for WM areas was compared. Finally, tract-based spatial statistics (TBSS) analysis was performed using each parameter. Results: The relationship between FA and kurtosis parameters (MK, RK, and AK) for WM areas had a strong positive correlation (FA-MK, R2 = 0.93; FA-RK, R2 = 0.89) and a strong negative correlation (FA-AK, R2 = 0.92). When comparing a TBSS connection, we found that this could be observed more clearly in MK than in RK and FA. Conclusions: WM analysis with DKI enable us to obtain more detailed information for connectivity between nerve structures. Advances in knowledge: Quantitative indices of neurological diseases were determined using segmenting WM regions using voxel-based morphometry processing of DKI images.

3.
Magn Reson Med Sci ; 22(4): 459-468, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35908880

RESUMO

PURPOSE: MR parameter mapping is a technique that obtains distributions of parameters such as relaxation time and proton density (PD) and is starting to be used for disease quantification in clinical diagnoses. Quantitative susceptibility mapping is also promising for the early diagnosis of brain disorders such as degenerative neurological disorders. Therefore, we developed an MR quantitative parameter mapping (QPM) method to map four tissue-related parameters (T1, T2*, PD, and susceptibility) and B1 simultaneously by using a 3D partially RF-spoiled gradient echo (pRSGE). We verified the accuracy and repeatability of QPM in phantom and volunteer experiments. METHODS: Tissue-related parameters are estimated by varying four scan parameters of the 3D pRSGE: flip angle, RF-pulse phase increment, TR and TE, performing multiple image scans, and finding a least-squares fit for an intensity function (which expresses the relationship between the scan parameters and intensity values). The intensity function is analytically complex, but by using a Bloch simulation to create it numerically, the least-squares fitting can be used to estimate the quantitative values. This has the advantage of shortening the image-reconstruction processing time needed to estimate the quantitative values than with methods using pattern matching. RESULTS: A 1.1-mm isotropic resolution scan covering the whole brain was completed with a scan time of approximately 12 minutes, and the reconstruction time using a GPU was approximately 1 minute. The phantom experiments confirmed that both the accuracy and repeatability of the quantitative values were high. The volunteer scans also confirmed that the accuracy of the quantitative values was comparable to that of conventional methods. CONCLUSION: The proposed QPM method can map T1, T2*, PD, susceptibility, and B1 simultaneously within a scan time that can be applied to human subjects.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Processamento de Imagem Assistida por Computador/métodos , Mapeamento Encefálico/métodos , Simulação por Computador , Imagens de Fantasmas
4.
Magn Reson Med Sci ; 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36543227

RESUMO

PURPOSE: To increase the number of images that can be acquired in MR examinations using quantitative parameters, we developed a method for obtaining arterial and venous images with mapping of proton density (PD), RF inhomogeneity (B1), longitudinal relaxation time (T1), apparent transverse relaxation time (T2*), and magnetic susceptibility through calculation, all with the same spatial resolution. METHODS: The proposed method uses partially RF-spoiled gradient echo sequences to obtain 3D images of a subject with multiple scan parameters. The PD, B1, T1, T2*, and magnetic susceptibility maps are estimated using the quantification method we previously developed. Arterial images are obtained by adding images using optimized weights to emphasize the arteries. A morphology filter is used to obtain venous images from the magnetic susceptibility maps. For evaluation, images obtained from four out of five healthy volunteers were used to optimize the weights used in the arterial-image calculation, and the optimized weights were applied to the images from the fifth volunteer to obtain an arterial image. Arterial images of the five volunteers were calculated using the leave-one-out method, and the contrast between the arterial and background regions defined using the reference time-of-flight (TOF) method was evaluated using the area under the receiver operation characteristic curve (AUC). The contrast between venous and background regions defined by a reference quantitative susceptibility mapping (QSM) method was also evaluated for the venous image. RESULTS: The AUC to discriminate blood vessels and background using the proposed method was 0.905 for the arterial image and 0.920 for the venous image. CONCLUSION: The results indicate that the arterial images and venous images have high signal intensity at the same region as determined from the reference TOF and QSM methods, demonstrating the possibility of acquiring vasculature images with quantitative parameter mapping through calculation in an integrated manner.

5.
Eur J Radiol ; 156: 110525, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36166986

RESUMO

PURPOSE: We developed a novel method which is applicable to visualize contrast according to myelin components in the human brain using relaxation time derived from quantitative parameter mapping magnetic resonance imaging (QPM-MRI). MATERIALS AND METHODS: Using healthy volunteer data (n = 10), we verified that our method demonstrated that the myelin-weighted contrast increased proportionally by products R1 and R2*, i.e., QPM-myelin-weighted image, in which modified T1-weighted/T2-weighted (T1w/T2w) ratio mapping method was applied. We compared measurement values in white matter (WM) and gray matter (GM) regions of the T1w/T2w ratio and R1·R2* product maps of healthy volunteers. Linear regression analysis between each value. Mann Whitney U test between WM and GM signals in each myelin map. In addition, Additionally, QPM-myelin-weighted image was applied to a 32-year-old female MS patient. RESULTS: Linear regression analysis showed a highly significant correlation between conventional T1w/T2w ratios and R1·R2* products derived from QPM (R = 0.73, P < 0.0001). Moreover, there is a significant difference between WM and GM structures in each myelin images (both, P < 0.0001). Additionally, in a clinical case, MS lesions enabled observation of not only MS plaques but also heterogeneous myelin signal loss associated with demyelination more clearly than T2w image and conventional T1w/T2w ratio image. CONCLUSION: Our myelin-weighted imaging technique using QPM may be useful for myelin visualization and is expected to become independent of measurement conditions due to having quantitative characteristics of QPM itself.

6.
Sci Rep ; 12(1): 2171, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35140243

RESUMO

In clinical magnetic resonance imaging, gadolinium-based contrast agents are commonly used for detecting brain tumors and evaluating the extent of malignancy. We present a new method to evaluate relaxivity (r1) and contrast agent concentration separately in contrast-enhanced lesions using quantitative parameter mapping (QPM). Furthermore, we also aimed to estimate the extracellular pH (pHe) of tumor lesions. We demonstrated that it is possible to evaluate pathophysiological tumor changes due to therapeutic efficacy by measuring r1 in contrast-enhanced lesions. In this study, the primary brain tumor group showed significantly higher r1 values than other brain disease groups (P < 0.001). Moreover, mean pHe value showed a trend for tumor malignancy having a lower pHe value and primary brain tumor having a significantly lower pHe than other brain diseases (P < 0.001). Our results might suggest that QPM can separately quantify r1 and CA concentration in brain tumors and that pHe brain tumor mapping could serve as a tumor biomarker. In conclusion, our method has potential clinical applications for assessing the treatment effects.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/metabolismo , Meios de Contraste , Idoso , Feminino , Gadolínio , Humanos , Concentração de Íons de Hidrogênio , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade
7.
J Magn Reson ; 324: 106910, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33482529

RESUMO

Spin-lock preparation was studied to detect tiny oscillatory magnetic fields such as a neural magnetic field without the blood oxygen level-dependent effect. This approach is a direct measurement and independent of static magnetic field strength. Accordingly, it is anticipated as a feasible functional magnetic resonance imaging (fMRI) in low and ultra-low-field MRI. Several reports have been published on spin-lock preparation but reports on imaging simulation are rare. Research in this area can assist in investigating magnetic resonance signal changes and, accordingly, can help to develop new spin-lock methods. In this study, we propose an imaging simulation method with an analytical solution using the Bloch equation. To demonstrate the feasibility of our proposed method, we compared simulated images with experimental results in which the number of sub-voxels and the amplitude and phase of the target oscillatory magnetic fields varied. In addition, we also applied graphics processing unit parallel computing and investigated the feasibility of avoiding an impracticable calculation time by doing so.


Assuntos
Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Artefatos , Simulação por Computador , Imagens de Fantasmas
8.
J Magn Reson ; 319: 106828, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33002769

RESUMO

We demonstrated the feasibility of the spin-lock preparation sequence using low-field magnetic resonance (MR) imaging that prevents interference from blood-oxygenation-level-dependent effects. We focused on two spin-lock preparations: spin-lock Mz (SL-Mz) and stimulus-induced rotary saturation (SIRS) and analyzed the magnetization dynamics during the sequences using the Bloch equation. Next, we performed phantom experiments using a loop coil to investigate the MR signal change as a function of the target signal strength and phase. Furthermore, we performed curve fittings to consider the radio frequency, which agreed with the experimental results. Then, we investigated the detectable strength of the magnetic field, and the SL-Mz detected a signal strength of 2.34 nT. In conclusion, our experimental results showed good agreement with the results obtained using the Bloch equation.

9.
J Magn Reson ; 321: 106849, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33128915

RESUMO

Several noninvasive techniques for the direct measurement of the neuronal activity using magnetic resonance imaging (MRI) have recently been reported. As a promising candidate, we focus on a spin-lock MRI sequence (i.e., stimulus-induced rotary saturation (SIRS)) directly measuring a tiny oscillating magnetic field. Previous phantom studies on SIRS have applied the target oscillating magnetic field parallel to the direction of the static magnetic field B0. However, in practice, the neuromagnetic fields are not always aligned in the same direction as in such a condition. This study investigates the MR signal changes during SIRS when the target magnetic field direction is not the same as that of the B0 field through both phantom experiments and Bloch simulations. The experimental results indicate that only the target magnetic field component along the B0 field affects the signal change, indicating that SIRS has partial sensitivity, even if the target magnetic fields are tilted from the B0 field. Furthermore, the simulation results show good agreements with the experimental results. These results clarify the sensitivity direction of SIRS-based fMRI and lead to the possibility that the direction of the generated neuromagnetic fields can be estimated, such that we can separate directional information from the other information contained in neuromagnetic fields (e.g., phase information).


Assuntos
Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Simulação por Computador , Humanos , Campos Magnéticos , Imagens de Fantasmas
10.
J Magn Reson ; 295: 38-44, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30096551

RESUMO

We studied stimulus-induced rotary-saturation preparation (which enables measurement of oscillating magnetic fields using MRI) and derived an analytical solution of the Bloch equation to understand magnetization dynamics mathematically and comprehensively and to conduct simulations without sequential-calculation techniques such as the Runge-Kutta method. We formulated the dynamics using the Bloch equation, introducing an additional rotating frame and some approximations to make it into a homogeneous differential equation. Moreover, we found that there are two modes depending on the target oscillating magnetic field. To confirm the validity of the solution, we experimentally investigated its characteristics and performed curve fitting using the analytical model. Considering the constraints on the frame, the analytical solution was found to agree with experimental data. The experimental data indicate that it is necessary to design robust sequences compensating B0 or B1lock spatial inhomogeneity to improve measurements. Therefore, experimenters should consider the dynamics of magnetization with RF pulses to rewind the spin phase for accurate measurements.

11.
Radiol Phys Technol ; 11(2): 255-261, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29700796

RESUMO

To realize susceptibility-weighted imaging in vertical-field magnetic resonance imaging (MRI), we developed an image-processing method called "susceptibility difference weighted imaging" (SDWI). In SDWI, contrasts are enhanced using a susceptibility map calculated by using a weighted least-square algorithm with a small iteration number. Experiments were performed on human volunteers to compare image contrast obtained from the conventional method (SWI) and SDWI. In horizontal-field MRI, SDWI results show that veins and deep-gray-matter nuclei were visualized as well as those with SWI. In vertical-field MRI, SDWI visualized veins and deep-gray-matter nuclei without severe streaking artifacts, while SWI did not. In our experiments, the time taken to calculate the susceptibility map in SDWI was less than 10 s. The results indicate that susceptibility-weighted imaging is feasible in vertical-field MRI using SDWI.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Adulto , Algoritmos , Humanos , Masculino , Veias/diagnóstico por imagem
12.
Magn Reson Med Sci ; 16(4): 340-350, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-28367904

RESUMO

Quantitative susceptibility mapping (QSM) is a new magnetic resonance imaging (MRI) technique for noninvasively estimating the magnetic susceptibility of biological tissue. Several methods for QSM have been proposed. One of these methods can estimate susceptibility with high accuracy in tissues whose contrast is consistent between magnitude images and susceptibility maps, such as deep gray-matter nuclei. However, the susceptibility of small veins is underestimated and not well depicted by using the above approach, because the contrast of small veins is inconsistent between a magnitude image and a susceptibility map. In order to improve the estimation accuracy and visibility of small veins without streaking artifacts, a method with multiple dipole-inversion combination with k-space segmentation (MUDICK) has been proposed. In the proposed method, k-space was divided into three domains (low-frequency, magic-angle, and high-frequency). The k-space data in low-frequency and magic-angle domains were obtained by L1-norm regularization using structural information of a pre-estimated susceptibility map. The k-space data in high-frequency domain were obtained from the pre-estimated susceptibility map in order to preserve small-vein contrasts. Using numerical simulation and human brain study at 3 Tesla, streaking artifacts and small-vein susceptibility were compared between MUDICK and conventional methods (MEDI and TKD). The numerical simulation and human brain study showed that MUDICK and MEDI had no severe streaking artifacts and MUDICK showed higher contrast and accuracy of susceptibility in small-veins compared to MEDI. These results suggest that MUDICK can improve the accuracy and visibility of susceptibility in small-veins without severe streaking artifacts.


Assuntos
Mapeamento Encefálico/métodos , Substância Cinzenta/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Humanos
13.
Magn Reson Med Sci ; 3(1): 45-9, 2004 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-16093619

RESUMO

BACKGROUND: Parallel imaging can be applied to cardiac imaging with a cylindrical MRI (magnetic resonance imaging) apparatus. Studies of open MRI, however, are few. This study sought to achieve cardiac cine parallel imaging (or RAPID, for "rapid acquisition through parallel imaging design") with an open 0.7T MRI apparatus. MATERIALS AND METHODS: Imaging time was shortened in all slice directions with the use of a dedicated four-channel RF receiving coil comprising solenoid coils and butterfly coils. Coil shape was designed through an RF-coil simulation that considered biological load. The auto-calibration of a 0.7T open MRI apparatus incorporated a modified image-domain reconstruction algorithm. Cine images were obtained with a BASG, or balanced SARGE (steady-state acquisition with rewound gradient echo), sequence. Image quality was evaluated with cylindrical phantoms and five healthy volunteers. RESULTS: Multi-slice phantom images showed no visible artifacts. Cine images taken under breath-hold with an acceleration factor of two were evaluated carefully. With auto-calibration, the images revealed no visible unfolded artifacts or motion artifacts. RAPID thus improved the acquisition speed, time resolution, and spatial resolution of short-axis, long-axis, and four-chamber images. CONCLUSION: The use of a dedicated RF coil enabled cardiac cine RAPID to be performed with an open MRI apparatus.


Assuntos
Cardiopatias/diagnóstico , Imagem Cinética por Ressonância Magnética/instrumentação , Artefatos , Desenho de Equipamento , Humanos , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA