RESUMO
OBJECTIVE: Patients with end-stage renal disease depend on hemodialysis for survival. Although arteriovenous fistulae (AVF) are the preferred vascular access for hemodialysis, the primary success rate of AVF is only 30% to 50% within 6 months, showing an urgent need for improvement. PD-L1 (programmed death ligand 1) is a ligand that regulates T-cell activity. Since T cells have an important role during AVF maturation, we hypothesized that PD-L1 regulates T cells to control venous remodeling that occurs during AVF maturation. Approach and results: In the mouse aortocaval fistula model, anti-PD-L1 antibody (200 mg, 3×/wk intraperitoneal) was given to inhibit PD-L1 activity during AVF maturation. Inhibition of PD-L1 increased T-helper type 1 cells and T-helper type 2 cells but reduced regulatory T cells to increase M1-type macrophages and reduce M2-type macrophages; these changes were associated with reduced vascular wall thickening and reduced AVF patency. Inhibition of PD-L1 also inhibited smooth muscle cell proliferation and increased endothelial dysfunction. The effects of anti-PD-L1 antibody on adaptive venous remodeling were diminished in nude mice; however, they were restored after T-cell transfer into nude mice, indicating the effects of anti-PD-L1 antibody on venous remodeling were dependent on T cells. CONCLUSIONS: Regulation of PD-L1 activity may be a potential therapeutic target for clinical translation to improve AVF maturation.
Assuntos
Antígeno B7-H1/fisiologia , Diferenciação Celular , Linfócitos T/fisiologia , Remodelação Vascular/fisiologia , Animais , Anticorpos/fisiologia , Derivação Arteriovenosa Cirúrgica , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Modelos Animais de Doenças , Feminino , Falência Renal Crônica/terapia , Macrófagos/fisiologia , Masculino , Camundongos Nus , Diálise RenalRESUMO
OBJECTIVE: Arteriovenous fistulae (AVF) are the preferred vascular access for hemodialysis, but the primary success rate of AVF remains poor. Successful AVF maturation requires vascular wall thickening and outward remodeling. A key factor determining successful AVF maturation is inflammation that is characterized by accumulation of both T-cells and macrophages. We have previously shown that anti-inflammatory (M2) macrophages are critically important for vascular wall thickening during venous remodeling; therefore, regulation of macrophage accumulation may be an important mechanism promoting AVF maturation. Since CD4+ T-cells such as T-helper type 1 cells, T-helper type 2 cells, and regulatory T-cells can induce macrophage migration, proliferation, and polarization, we hypothesized that CD4+ T-cells regulate macrophage accumulation to promote AVF maturation. Approach and Results: In a mouse aortocaval fistula model, T-cells temporally precede macrophages in the remodeling AVF wall. CsA (cyclosporine A; 5 mg/kg, sq, daily) or vehicle (5% dimethyl sulfoxide) was administered to inhibit T-cell function during venous remodeling. CsA reduced the numbers of T-helper type 1 cells, T-helper type 2, and regulatory T-cells, as well as M1- and M2-macrophage accumulation in the wall of the remodeling fistula; these effects were associated with reduced vascular wall thickening and increased outward remodeling in wild-type mice. However, these effects were eliminated in nude mice, showing that the effects of CsA on macrophage accumulation and adaptive venous remodeling are T-cell-dependent. CONCLUSIONS: T-cells regulate macrophage accumulation in the maturing venous wall to control adaptive remodeling. Regulation of T-cells during AVF maturation may be a strategy that can improve AVF maturation. Graphic Abstract: A graphic abstract is available for this article.