Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Rev Bras Farmacogn ; 33(2): 288-299, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36908300

RESUMO

Brazil is one of the largest propolis producers in the world. Propolis is produced by bees from plant exudates and tissues, leading to many variations in the types of propolis. Generally, Brazilian propolis types are green, brown, and red. Despite not being the main research focus as the green and red propolis, brown propolis is the second most produced propolis type in Brazil and has tremendous economic and medicinal importance. Propolis has drawn attention with the rise in the search for healthier lifestyles, functional foods, biocosmetics, and natural products as therapeutic sources. This review covers the main chemical constituents identified in different types of Brazilian brown propolis, and their botanical sources, chemistry, and biological activities. The economic aspect of brown propolis is also presented. There are many gaps to be filled for brown propolis regarding the development of analytical methods, and quality control to allow its standardization, limiting its applicability in the food and pharmaceutical industries. Future perspectives regarding brown propolis research were discussed, especially biological activities, to support the medicinal uses of different types of brown propolis. Supplementary Information: The online version contains supplementary material available at 10.1007/s43450-023-00374-x.

2.
Chem Biol Interact ; 370: 110313, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36566914

RESUMO

Guttiferones belong to the polyisoprenylated benzophenone, a class of compounds, a very restricted group of natural plant products, especially in the Clusiaceae family. They are commonly found in bark, stem, leaves, and fruits of plants of the genus Garcinia and Symphonia. Guttiferones have the following classifications according to their chemical structure: A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, and T. All of them have received growing attention due to its multiple biological activities. This review provides a first comprehensive approach to plant sources, phytochemical profile, specific pharmacological effects, and mechanisms of guttiferones already described. Studies indicate a broad spectrum of pharmacological activities, such as: anti-inflammatory, immunomodulatory, antioxidant, antitumor, antiparasitic, antiviral, and antimicrobial. Despite the low toxicity of these compounds in healthy cells, there is a lack of studies in the literature related to toxicity in general. Given their beneficial effects, guttiferones are expected to be great potential drug candidates for treating cancer and infectious and transmissible diseases. However, further studies are needed to elucidate their toxicity, specific molecular mechanisms and targets, and to perform more in-depth pharmacokinetic studies. This review highlights chemical properties, biological characteristics, and mechanisms of action so far, offering a broad view of the subject and perspectives for the future of guttiferones in therapeutics.


Assuntos
Clusiaceae , Clusiaceae/química , Extratos Vegetais/farmacologia , Compostos Fitoquímicos/farmacologia
3.
Planta Med ; 89(2): 158-167, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36170858

RESUMO

Guttiferone E (GE) is a benzophenone found in Brazilian red propolis. In the present study, the effect of GE on human (A-375) and murine (B16-F10) melanoma cells was investigated. GE significantly reduced the cellular viability of melanoma cells in a time-dependent manner. In addition, GE demonstrated antiproliferative effect, with IC50 values equivalent to 9.0 and 6.6 µM for A-375 and B16-F10 cells, respectively. The treatment of A-375 cells with GE significantly increased cell populations in G0/G1 phase and decreased those in G2/M phase. Conversely, on B16-F10 cells, GE led to a significant decrease in the populations of cells in G0/G1 phase and concomitantly an increase in the population of cells in phase S. A significantly higher percentage of apoptotic cells was observed in A-375 (43.5%) and B16-F10 (49.9%) cultures after treatment with GE. Treatments with GE caused morphological changes and significant decrease to the melanoma cells' density. GE (10 µM) inhibited the migration of melanoma cells, with a higher rate of inhibition in B16-F10 cells (73.4%) observed. In addition, GE significantly reduced the adhesion of A375 cells, but showed no effect on B16-F10. Treatment with GE did not induce changes in P53 levels in A375 cultures. Molecular docking calculations showed that GE is stable in the active sites of the tubulin dimer with a similar energy to taxol chemotherapy. Taken together, the data suggest that GE has promising antineoplastic potential against melanoma.


Assuntos
Antineoplásicos , Melanoma Experimental , Melanoma , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , Simulação de Acoplamento Molecular , Antineoplásicos/uso terapêutico , Benzofenonas/farmacologia , Benzofenonas/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma Experimental/tratamento farmacológico , Camundongos Endogâmicos C57BL
4.
Antioxidants (Basel) ; 11(11)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36358560

RESUMO

Skin wound healing is a complex process that requires the mutual work of cellular and molecular agents to promote tissue restoration. In order to improve such a process, especially in cases of impaired healing (e.g., diabetic ulcer, chronic wounds), there is a search for substances with healing properties and low toxicity: two features that some natural products-such as the bee product named propolis-exhibit. Propolis is a resinous substance obtained from plant resins and exudates with antioxidant, anti-inflammatory, and antitumoral activities, among other biological ones. Based on the previously reported healing actions of different types of propolis, the Brazilian red propolis (BRP) was tested for this matter. A skin wound excision model in male Wistar rats was performed using two topical formulations with 1% red propolis as treatments: hydroalcoholic extract and Paste. Macroscopical, histological and immunohistochemical analysis were performed, revealing that red propolis enhanced wound contraction, epithelialization, reduced crust formation, and modulated the distribution of healing associated factors, mainly collagen I, collagen III, MMP-9, TGF-ß3 and VEGF. Biochemical analysis with the antioxidants SOD, MPO, GSH and GR showed that propolis acts similarly to the positive control, collagenase, increasing these molecules' activity. These results suggest that BRP promotes enhanced wound healing by modulating growth factors and antioxidant molecules related to cutaneous wound healing.

5.
Molecules ; 25(9)2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32354180

RESUMO

The Brazilian red propolis (BRP) constitutes an important commercial asset for northeast Brazilian beekeepers. The role of Dalbergia ecastaphyllum (L.) Taub. (Fabaceae) as the main botanical source of this propolis has been previously confirmed. However, in addition to isoflavonoids and other phenolics, which are present in the resin of D. ecastaphyllum, samples of BRP are reported to contain substantial amounts of polyprenylated benzophenones, whose botanical source was unknown. Therefore, field surveys, phytochemical and chromatographic analyses were undertaken to confirm the botanical sources of the red propolis produced in apiaries located in Canavieiras, Bahia, Brazil. The results confirmed D. ecastaphyllum as the botanical source of liquiritigenin (1), isoliquiritigenin (2), formononetin (3), vestitol (4), neovestitol (5), medicarpin (6), and 7-O-neovestitol (7), while Symphonia globulifera L.f. (Clusiaceae) is herein reported for the first time as the botanical source of polyprenylated benzophenones, mainly guttiferone E (8) and oblongifolin B (9), as well as the triterpenoids ß-amyrin (10) and glutinol (11). The chemotaxonomic and economic significance of the occurrence of polyprenylated benzophenones in red propolis is discussed.


Assuntos
Clusiaceae/química , Dalbergia/química , Isoflavonas/química , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/química , Benzofenonas/análise , Benzofenonas/química , Brasil , Chalconas/análise , Cromatografia Líquida de Alta Pressão , Desenho de Fármacos , Flavanonas/análise , Flavonoides/análise , Isoflavonas/análise , Espectroscopia de Ressonância Magnética , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/análise , Extratos Vegetais/análise , Pterocarpanos/análise , Terpenos/análise , Triterpenos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA