Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
EBioMedicine ; 100: 104949, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199043

RESUMO

BACKGROUND: Attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) are neurodevelopmental conditions with early life origins. Alterations in blood lipids have been linked to ADHD and ASD; however, prospective early life data are limited. This study examined (i) associations between the cord blood lipidome and ADHD/ASD symptoms at 2 years of age, (ii) associations between prenatal and perinatal predictors of ADHD/ASD symptoms and cord blood lipidome, and (iii) mediation by the cord blood lipidome. METHODS: From the Barwon Infant Study cohort (1074 mother-child pairs, 52.3% male children), child circulating lipid levels at birth were analysed using ultra-high-performance liquid chromatography-tandem mass spectrometry. These were clustered into lipid network modules via Weighted Gene Correlation Network Analysis. Associations between lipid modules and ADHD/ASD symptoms at 2 years, assessed with the Child Behavior Checklist, were explored via linear regression analyses. Mediation analysis identified indirect effects of prenatal and perinatal risk factors on ADHD/ASD symptoms through lipid modules. FINDINGS: The acylcarnitine lipid module is associated with both ADHD and ASD symptoms at 2 years of age. Risk factors of these outcomes such as low income, Apgar score, and maternal inflammation were partly mediated by higher birth acylcarnitine levels. Other cord blood lipid profiles were also associated with ADHD and ASD symptoms. INTERPRETATION: This study highlights that elevated cord blood birth acylcarnitine levels, either directly or as a possible marker of disrupted cell energy metabolism, are on the causal pathway of prenatal and perinatal risk factors for ADHD and ASD symptoms in early life. FUNDING: The foundational work and infrastructure for the BIS was sponsored by the Murdoch Children's Research Institute, Deakin University, and Barwon Health. Subsequent funding was secured from the Minderoo Foundation, the European Union's Horizon 2020 research and innovation programme (ENDpoiNTs: No 825759), National Health and Medical Research Council of Australia (NHMRC) and Agency for Science, Technology and Research Singapore [APP1149047], The William and Vera Ellen Houston Memorial Trust Fund (via HOMER Hack), The Shepherd Foundation, The Jack Brockhoff Foundation, the Scobie & Claire McKinnon Trust, the Shane O'Brien Memorial Asthma Foundation, the Our Women Our Children's Fund Raising Committee Barwon Health, the Rotary Club of Geelong, the Ilhan Food Allergy Foundation, Geelong Medical and Hospital Benefits Association, Vanguard Investments Australia Ltd, the Percy Baxter Charitable Trust, and Perpetual Trustees.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Carnitina/análogos & derivados , Lactente , Recém-Nascido , Humanos , Masculino , Feminino , Transtorno do Espectro Autista/epidemiologia , Transtorno do Espectro Autista/etiologia , Estudos de Coortes , Transtorno do Deficit de Atenção com Hiperatividade/epidemiologia , Transtorno do Deficit de Atenção com Hiperatividade/etiologia , Sangue Fetal , Estudos Prospectivos , Lipídeos
2.
medRxiv ; 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37873073

RESUMO

Introduction: The association between air pollution and poor respiratory health outcomes is well established, however less is known about the biological mechanisms, especially in early life. Children are particularly at risk from air pollution, especially during the prenatal period as their organs and systems are still undergoing crucial development. Therefore, our study aims to investigate if maternal exposure to air pollution during pregnancy is associated with oxidative stress (OS) and inflammation in pregnancy or infant lung function at 4 weeks of age, and the extent to which the association is modified by an infant's genetic risk of OS. Methods: The Barwon Infant Study (BIS) is a longitudinal study of Australian children from the region of Geelong, Victoria. A total of 314 infants had available lung function and maternal OS markers. Exposure to annual air pollutants (NO 2 and PM 2.5 ) were estimated using validated, satellite-based, land-use regression models. Infant lung function was measured by multiple-breath washout, and the ratio of peak tidal expiratory flow over expiratory time was calculated at 4 weeks of age. An inflammation biomarker, glycoprotein acetyls (GlycA), was measured in maternal (36 weeks) and cord blood, and oxidative stress (OS) biomarkers, 8-hydroxyguanine (8-OHGua) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) were measured in maternal urine at 28 weeks. A genetic pathway score for OS (gPFS ox ) was calculated for each infant participant in the BIS cohort, and high risk defined as score >8. Linear regression was used to explore the association of maternal air pollution exposure with infant lung function, and potential modification by OS genotype was tested through use of interaction terms and other methods. Results: There was no evidence of a relationship between maternal exposure to air pollution and infant lung function in the whole population. We did not find an association between air pollution and GlycA or OS during pregnancy. We found evidence of an association between NO 2 and lower in functional residual capacity (FRC) for children with a high genetic risk of OS (ß=-5.3 mls, 95% CI (-9.3, -1.3), p=0.01). We also found that when NO 2 was considered in tertiles, the highest tertile of NO 2 was associated with increase in lung clearance index (LCI) (ß=0.46 turnovers, (95% CI 0.10, 0.82), p=0.01) in children with a genetic propensity to OS. Conclusion: Our study found that high prenatal levels of exposure to ambient NO 2 levels is associated with lower FRC and higher LCI in infants with a genetic propensity to oxidative stress. There was no relationship between maternal exposure to air pollution with maternal and cord blood inflammation or OS biomarkers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA