Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Biol Pharm Bull ; 46(3): 511-516, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36858581

RESUMO

Pharmacogenetics (PGx) enhances personalized care, often reducing medical costs, and improving patients' QOL. Unlike single variant analysis, multiplex PGx panel tests can result in applying comprehensive PGx-guided medication to maximize drug efficacy and minimize adverse reactions. Among PGx genes, drug-metabolizing enzymes and drug transporters have significant roles in the efficacy and safety of various pharmacotherapies. In this study, a genotyping panel has been developed for the Japanese population called PGx_JPN panel comprising 36 variants in 14 genes for drug-metabolizing enzymes and drug transporters using a mass spectrometry-based genotyping method, in which all the variants could be analyzed in two wells for multiplex analysis. The verification test exhibited good concordance with the results analyzed using the other standard genotyping methods (microarray, TaqMan assay, or another mass spectrometry-based commercial kit). However, copy number variations such as CYP2D6*5 could not apply to this system. In this study, we demonstrated that the mass spectrometry-based multiplex method could be useful for in the simultaneous genotyping of more than 30 variants, which are essential among the Japanese population in two wells, except for copy number variations. Further study is needed to assess our panel to demonstrate the clinical use of pharmacogenomics for precision medicine in the Japanese population.


Assuntos
Variações do Número de Cópias de DNA , Farmacogenética , Humanos , População do Leste Asiático , Qualidade de Vida , Espectrometria de Massas , Proteínas de Membrana Transportadoras
2.
Methods Mol Biol ; 2519: 27-40, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36066707

RESUMO

Cell cycle-dependent regulation of chromosome is a dynamic event. After replication in S phase, sister chromatids show dynamic behavior including condensation, alignment, and segregation in M phase. These beautiful behaviors of chromosomes observed through the microscope have fascinated people since more than 100 years ago, and now we can sketch the dynamics of regulatory proteins and their posttranscriptional modifications through the fluorescent microscope. The purpose of this chapter is describing the basic methods of immunofluorescence analysis of mitotic cells and chromosomes. Besides, the key ideas for improving the preparation of the specimen are also described. Because the characteristic of the proteins of your interest differs one by one, modifying the method might cause the crucial improvement in the observation.


Assuntos
Cromátides , Mitose , Segregação de Cromossomos , Cromossomos , Humanos , Microscopia de Fluorescência
3.
PLoS One ; 16(11): e0259846, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34784358

RESUMO

Epigenome research has employed various methods to identify the genomic location of proteins of interest, such as transcription factors and histone modifications. A recently established method called CUT&Tag uses a Protein-A Tn5 transposase fusion protein, which cuts the genome and inserts adapter sequences nearby the target protein. Throughout most of the CUT&Tag procedure, cells are held on concanavalin A (con A)-conjugated magnetic beads. Proper holding of cells would be decisive for the accessibility of Tn5 to the chromatin, and efficacy of the procedure of washing cells. However, BioMag®Plus ConA magnetic beads, used in the original CUT&Tag protocol, often exhibit poor suspendability and severe aggregation. Here, we compared the BioMag beads and Dynabeads® magnetic particles of which conjugation of con A was done by our hands, and examined the performance of these magnetic beads in CUT&Tag. Among tested, one of the Dynabeads, MyOne-T1, kept excessive suspendability in a buffer even after overnight incubation. Furthermore, the MyOne-T1 beads notably improved the sensitivity in CUT&Tag assay for H3K4me3. In conclusion, the arrangement and the selection of MyOne-T1 refine the suspendability of beads, which improves the association of chromatin with Tn5, which enhances the sensitivity in CUT&Tag assay.


Assuntos
Concanavalina A/administração & dosagem , Histonas/metabolismo , Proteína Estafilocócica A/genética , Transposases/genética , Animais , Linhagem Celular , Concanavalina A/química , Concanavalina A/farmacologia , Epigenômica , Células HEK293 , Código das Histonas , Humanos , Separação Imunomagnética , Campos Magnéticos , Metilação , Camundongos , Tamanho da Partícula , Proteínas Recombinantes de Fusão/metabolismo , Proteína Estafilocócica A/metabolismo , Transposases/metabolismo
4.
J Cell Biol ; 218(10): 3223-3236, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31527146

RESUMO

The accurate regulation of phosphorylation at the kinetochore is essential for establishing chromosome bi-orientation. Phosphorylation of kinetochore proteins by the Aurora B kinase destabilizes improper kinetochore-microtubule attachments, whereas the phosphatase PP2A has a counteracting role. Imbalanced phosphoregulation leads to error-prone chromosome segregation and aneuploidy, a hallmark of cancer cells. However, little is known about the molecular events that control the balance of phosphorylation at the kinetochore. Here, we show that localization of SET/TAF1, an oncogene product, to centromeres maintains Aurora B kinase activity by inhibiting PP2A, thereby correcting erroneous kinetochore-microtubule attachment. SET localizes at the inner centromere by interacting directly with shugoshin 2, with SET levels declining at increased distances between kinetochore pairs, leading to establishment of chromosome bi-orientation. Moreover, SET overexpression induces chromosomal instability by disrupting kinetochore-microtubule attachment. Thus, our findings reveal the novel role of SET in fine-tuning the phosphorylation level at the kinetochore by balancing the activities of Aurora B and PP2A.


Assuntos
Aurora Quinase B/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Proteínas de Ligação a DNA/metabolismo , Histona Acetiltransferases/metabolismo , Chaperonas de Histonas/metabolismo , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/metabolismo , Células Cultivadas , Células HEK293 , Células HeLa , Humanos
6.
Science ; 357(6355): 981, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28874501
7.
Genes Cells ; 22(6): 552-567, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28497540

RESUMO

In meiosis I, sister chromatids are captured by microtubules emanating from the same pole (mono-orientation), and centromeric cohesion is protected throughout anaphase. Shugoshin, which is localized to centromeres depending on the phosphorylation of histone H2A by Bub1 kinase, plays a central role in protecting meiotic cohesin Rec8 from separase cleavage. Another key meiotic kinetochore factor, meikin, may regulate cohesion protection, although the underlying molecular mechanisms remain elusive. Here, we show that fission yeast Moa1 (meikin), which associates stably with CENP-C during meiosis I, recruits Plo1 (polo-like kinase) to the kinetochores and phosphorylates Spc7 (KNL1) to accumulate Bub1. Consequently, in contrast to the transient kinetochore localization of mitotic Bub1, meiotic Bub1 persists at kinetochores until anaphase I. The meiotic Bub1 pool ensures robust Sgo1 (shugoshin) localization and cohesion protection at centromeres by cooperating with heterochromatin protein Swi6, which binds and stabilizes Sgo1. Furthermore, molecular genetic analyses show a hierarchical regulation of centromeric cohesion protection by meikin and shugoshin that is important for establishing meiosis-specific chromosome segregation. We provide evidence that the meiosis-specific Bub1 regulation is conserved in mouse.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Regulação Fúngica da Expressão Gênica , Meiose , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Animais , Adesão Celular , Células Cultivadas , Centrômero/genética , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/fisiologia , Cinetocoros , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microtúbulos/metabolismo , Fosforilação , Schizosaccharomyces/citologia , Schizosaccharomyces/crescimento & desenvolvimento , Espermatócitos/citologia , Espermatócitos/metabolismo , Quinase 1 Polo-Like
8.
Curr Biol ; 27(7): 1005-1012, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28343969

RESUMO

Sister-chromatid cohesion is established by the cohesin complex in S phase and persists until metaphase, when sister chromatids are captured by microtubules emanating from opposite poles [1]. The Aurora-B-containing chromosome passenger complex (CPC) plays a crucial role in achieving chromosome bi-orientation by correcting erroneous microtubule attachment [2]. The centromeric localization of the CPC relies largely on histone H3-T3 phosphorylation (H3-pT3), which is mediated by the mitotic histone kinase Haspin/Hrk1 [3-5]. Hrk1 localization to centromeres depends largely on the cohesin subunit Pds5 in fission yeast [5]; however, it is unknown how Pds5 regulates Hrk1 localization. Here we identify a conserved Hrk1-interacting motif (HIM) in Pds5 and a Pds5-interacting motif (PIM) in Hrk1 in fission yeast. Mutations in either motif result in the displacement of Hrk1 from centromeres. We also show that the mechanism of Pds5-dependent Hrk1 recruitment is conserved in human cells. Notably, the PIM in Haspin/Hrk1 is reminiscent of the YSR motif found in the mammalian cohesin destabilizer Wapl and stabilizer Sororin, both of which bind PDS5 [6-12]. Similarly, and through the same motifs, fission yeast Pds5 binds to Wpl1/Wapl and acetyltransferase Eso1/Eco1, in addition to Hrk1. Thus, we have identified a protein-protein interaction module in Pds5 that serves as a chromatin platform for regulating sister-chromatid cohesion and chromosome bi-orientation.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Canais de Potássio Corretores do Fluxo de Internalização/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Segregação de Cromossomos , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Humanos , Canais de Potássio Corretores do Fluxo de Internalização/química , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Alinhamento de Sequência , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
9.
Science ; 349(6253): 1237-40, 2015 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-26359403

RESUMO

Chromosomal instability (CIN) is a major trait of cancer cells and a potent driver of tumor progression. However, the molecular mechanisms underlying CIN still remain elusive. We found that a number of CIN(+) cell lines have impairments in the integrity of the conserved inner centromere-shugoshin (ICS) network, which coordinates sister chromatid cohesion and kinetochore-microtubule attachment. These defects are caused mostly by the loss of histone H3 lysine 9 trimethylation at centromeres and sometimes by a reduction in chromatin-associated cohesin; both pathways separately sustain centromeric shugoshin stability. Artificial restoration of the ICS network suppresses chromosome segregation errors in a wide range of CIN(+) cells, including RB- and BRCA1-deficient cells. Thus, dysfunction of the ICS network might be a key mechanism underlying CIN in human tumorigenesis.


Assuntos
Carcinogênese/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Instabilidade Cromossômica , Segregação de Cromossomos , Proteína BRCA1/genética , Carcinogênese/genética , Proteínas de Ciclo Celular/genética , Centrômero/genética , Cromátides/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Células HeLa , Histonas/metabolismo , Humanos , Cinetocoros/metabolismo , Lisina/metabolismo , Metilação , Microtúbulos/metabolismo , Proteína do Retinoblastoma/genética , Coesinas
10.
Nature ; 517(7535): 466-71, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25533956

RESUMO

The kinetochore is the crucial apparatus regulating chromosome segregation in mitosis and meiosis. Particularly in meiosis I, unlike in mitosis, sister kinetochores are captured by microtubules emanating from the same spindle pole (mono-orientation) and centromeric cohesion mediated by cohesin is protected in the following anaphase. Although meiotic kinetochore factors have been identified only in budding and fission yeasts, these molecules and their functions are thought to have diverged earlier. Therefore, a conserved mechanism for meiotic kinetochore regulation remains elusive. Here we have identified in mouse a meiosis-specific kinetochore factor that we termed MEIKIN, which functions in meiosis I but not in meiosis II or mitosis. MEIKIN plays a crucial role in both mono-orientation and centromeric cohesion protection, partly by stabilizing the localization of the cohesin protector shugoshin. These functions are mediated mainly by the activity of Polo-like kinase PLK1, which is enriched to kinetochores in a MEIKIN-dependent manner. Our integrative analysis indicates that the long-awaited key regulator of meiotic kinetochore function is Meikin, which is conserved from yeasts to humans.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Sequência Conservada , Cinetocoros/metabolismo , Meiose , Animais , Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/deficiência , Proteínas Cromossômicas não Histona/genética , Feminino , Humanos , Infertilidade/genética , Infertilidade/metabolismo , Masculino , Camundongos , Dados de Sequência Molecular , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Quinase 1 Polo-Like
12.
J Occup Health ; 55(4): 292-300, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23698183

RESUMO

OBJECTIVES: The aim of this study was to ascertain the actual state of toner exposure of workers who handle toner. METHODS: Personal exposure measurements were conducted on workers handling toner in which the respirable dust (RD) concentration by work type was determined. Targeted work types consisted of "machine recycling", "toner manufacturing", "toner research/development", "machine design/development" and "servicing." The implementation period lasted from April 2003 to March 2011, and measurements were conducted annually. The measurement method conformed to the Japanese Working Environment Measurement Standards (new standards adopted starting in 2005). RESULTS: Comparing the RD concentrations for fiscal year 2003 by work, significant differences were found between machine recycling and the other four work types, as well as in toner manufacturing and the other four work types. Similarly, based on the new legislative standards applied in Japan from fiscal year 2005, significant differences were found between machine recycling and the other four work types, as well as in toner manufacturing and the other four work types. DISCUSSION: It is clear that workers engaged in machine recycling and toner manufacturing are exposed to toner, and that a certain level of exposure is continuing. Although it cannot be said that workers involved in toner research/development, machine design/development and servicing have no toner exposure, the concentration is of an extremely low level. CONCLUSIONS: At present, toner exposure levels by work type can be divided into two groups-one consisting of machine recycling and toner manufacturing, and the other consisting of toner research/development, machine design/development and servicing.


Assuntos
Processos de Cópia , Pulmão/efeitos dos fármacos , Manufaturas/efeitos adversos , Exposição Ocupacional/análise , Ocupações , Poeira/análise , Humanos , Exposição Ocupacional/efeitos adversos
13.
Nat Cell Biol ; 14(7): 746-52, 2012 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-22660415

RESUMO

The genomic stability of all organisms depends on the precise partition of chromosomes to daughter cells. The spindle assembly checkpoint (SAC) senses unattached kinetochores and prevents premature entry to anaphase, thus ensuring that all chromosomes attach to opposite spindle poles (bi-orientation) during mitosis. MPS1 is an evolutionarily conserved protein kinase required for the SAC and chromosome bi-orientation. Yet, its primary cellular substrate has remained elusive. We show that fission yeast Mph1 (MPS1 homologue) phosphorylates the kinetochore protein Spc7 (KNL1/Blinkin homologue) at the MELT repeat sequences. This phosphorylation promotes the in vitro binding to the Bub1-Bub3 complex, which is required for kinetochore-based SAC activation (Mad1-Mad2-Mad3 localization) and chromosome alignment. Accordingly, a non-phosphorylatable spc7-12A mutation abolishes kinetochore targeting of Bub1-Bub3, whereas a phospho-mimetic spc7-12E mutation forces them to localize at kinetochores throughout the entire cell cycle, even in the absence of Mph1. Thus, MPS1/Mph1 kinase locating at the unattached kinetochores initially creates a mark, which is crucial for SAC activation and chromosome bi-orientation. This mechanism seems to be conserved in human cells.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , Cinetocoros/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular , Proteínas Quinases/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimologia , Proteínas de Ciclo Celular/metabolismo , Proteínas Mad2 , Mutação , Proteínas Nucleares/metabolismo , Fosforilação , Ligação Proteica , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/crescimento & desenvolvimento , Proteínas de Schizosaccharomyces pombe/genética , Fatores de Tempo
14.
Biochem Biophys Res Commun ; 411(1): 7-13, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21684257

RESUMO

The activation of innate immune responses is critical to host defense against microbial infections, wherein nucleic acid-sensing pattern recognition receptors recognize DNA or RNA from viruses or bacteria and activate downstream signaling pathways. In a search for new DNA-sensing molecules that regulate innate immune responses, we identified RNA-binding motif protein 3 (RBM3), whose role has been implicated in the regulation of cell growth. In this study, we generated Rbm3-deficient (Rbm3(-/-)) mice to study the role of RBM3 in immune responses and cell growth. Despite evidence for its interaction with immunogenic DNA in a cell, no overt phenotypic abnormalities were found in cells from Rbm3(-/-) mice for the DNA-mediated induction of cytokine genes. Interestingly, however, Rbm3(-/-) mouse embryonic fibroblasts (MEFs) showed poorer proliferation rates as compared to control MEFs. Further cell cycle analysis revealed that Rbm3(-/-) MEFs have markedly increased number of G2-phase cells, suggesting a hitherto unknown role of RBM3 in the G2-phase control. Thus, these mutant mice and cells may provide new tools with which to study the mechanisms underlying the regulation of cell cycle and oncogenesis.


Assuntos
Ciclo Celular/genética , Imunidade Inata/genética , Proteínas de Ligação a RNA/fisiologia , Animais , Transformação Celular Neoplásica/genética , Fase G2/genética , Camundongos , Camundongos Mutantes , Proteínas de Ligação a RNA/genética
15.
Science ; 330(6001): 239-43, 2010 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-20929775

RESUMO

For proper partitioning of chromosomes in mitosis, the chromosomal passenger complex (CPC) including Aurora B and survivin must be localized at the center of paired kinetochores, at the site called the inner centromere. It is largely unknown what defines the inner centromere and how the CPC is targeted to this site. Here, we show that the phosphorylation of histone H3-threonine 3 (H3-pT3) mediated by Haspin cooperates with Bub1-mediated histone 2A-serine 121 (H2A-S121) phosphorylation in targeting the CPC to the inner centromere in fission yeast and human cells. H3-pT3 promotes nucleosome binding of survivin, whereas phosphorylated H2A-S121 facilitates the binding of shugoshin, the centromeric CPC adaptor. Haspin colocalizes with cohesin by associating with Pds5, whereas Bub1 localizes at kinetochores. Thus, the inner centromere is defined by intersection of two histone kinases.


Assuntos
Centrômero/metabolismo , Cromossomos Fúngicos/fisiologia , Cromossomos Humanos/fisiologia , Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Sequência de Aminoácidos , Aurora Quinase B , Aurora Quinases , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , Células HeLa , Heterocromatina/metabolismo , Humanos , Proteínas Inibidoras de Apoptose , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose , Dados de Sequência Molecular , Mutação , Nucleossomos/metabolismo , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Serina/metabolismo , Survivina , Treonina/metabolismo , Coesinas
16.
Genes Dev ; 24(19): 2169-79, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20889715

RESUMO

Shugoshin (Sgo) is a conserved centromeric protein. Mammalian Sgo1 collaborates with protein phosphatase 2A (PP2A) to protect mitotic cohesin from the prophase dissociation pathway. Although another shugoshin-like protein, Sgo2, is required for the centromeric protection of cohesion in germ cells, its precise molecular function remains largely elusive. We demonstrate that hSgo2 plays a dual role in chromosome congression and centromeric protection of cohesion in HeLa cells, while the latter function is exposed only in perturbed mitosis. These functions partly overlap with those of Aurora B, a kinase setting faithful chromosome segregation. Accordingly, we identified the phosphorylation of hSgo2 by Aurora B at the N-terminal coiled-coil region and the middle region, and showed that these phosphorylations separately promote binding of hSgo2 to PP2A and MCAK, factors required for centromeric protection and chromosome congression, respectively. Furthermore, these phosphorylations are essential for localizing PP2A and MCAK to centromeres. This mechanism seems applicable to germ cells as well. Thus, our study identifies Sgo2 as a hitherto unknown crucial cellular substrate of Aurora B in mammalian cells.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Cinesinas/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Aurora Quinase B , Aurora Quinases , Células Cultivadas , Células HeLa , Humanos , Fosforilação , Transporte Proteico
17.
Nature ; 467(7316): 719-23, 2010 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-20739936

RESUMO

Successful partition of replicated genomes at cell division requires chromosome attachment to opposite poles of mitotic spindle (bi-orientation). Any defects in this regulation bring about chromosomal instability, which may accelerate tumour progression in humans. To achieve chromosome bi-orientation at prometaphase, the chromosomal passenger complex (CPC), composed of catalytic kinase Aurora B and regulatory components (INCENP, Survivin and Borealin), must be localized to centromeres to phosphorylate kinetochore substrates. Although the CPC dynamically changes the subcellular localization, the regulation of centromere targeting is largely unknown. Here we isolated a fission yeast cyclin B mutant defective specifically in chromosome bi-orientation. Accordingly, we identified Cdk1 (also known as Cdc2)-cyclin-B-dependent phosphorylation of Survivin. Preventing Survivin phosphorylation impairs centromere CPC targeting as well as chromosome bi-orientation, whereas phosphomimetic Survivin suppresses the bi-orientation defect in the cyclin B mutant. Survivin phosphorylation promotes direct binding with shugoshin, which we now define as a conserved centromeric adaptor of the CPC. In human cells, the phosphorylation of Borealin has a comparable role. Thus, our study resolves the conserved mechanisms of CPC targeting to centromeres, highlighting a key role of Cdk1-cyclin B in chromosome bi-orientation.


Assuntos
Proteína Quinase CDC2/metabolismo , Cromossomos Fúngicos/metabolismo , Cromossomos Humanos/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Sequência de Aminoácidos , Animais , Aurora Quinase B , Aurora Quinases , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Ciclina B/genética , Ciclina B/metabolismo , Humanos , Proteínas Inibidoras de Apoptose , Proteínas Associadas aos Microtúbulos/metabolismo , Dados de Sequência Molecular , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Especificidade por Substrato , Survivina
19.
Nat Cell Biol ; 10(1): 42-52, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18084284

RESUMO

Reductional chromosome segregation in germ cells, where sister chromatids are pulled to the same pole, accompanies the protection of cohesin at centromeres from separase cleavage. Here, we show that mammalian shugoshin Sgo2 is expressed in germ cells and is solely responsible for the centromeric localization of PP2A and the protection of cohesin Rec8 in oocytes, proving conservation of the mechanism from yeast to mammals. However, this role of Sgo2 contrasts with its mitotic role in protecting centromeric cohesin only from prophase dissociation, but never from anaphase cleavage. We demonstrate that, in somatic cells, shugoshin colocalizes with cohesin in prophase or prometaphase, but their localizations become separate when centromeres are pulled oppositely at metaphase. Remarkably, if tension is artificially removed from the centromeres at the metaphase-anaphase transition, cohesin at the centromeres can be protected from separase cleavage even in somatic cells, as in germ cells. These results argue for a unified view of centromeric protection by shugoshin in mitosis and meiosis.


Assuntos
Proteínas de Ciclo Celular/genética , Centrômero/metabolismo , Perfilação da Expressão Gênica , Oócitos/metabolismo , Animais , Northern Blotting , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Feminino , Células HeLa , Humanos , Imuno-Histoquímica , Cinetocoros/metabolismo , Masculino , Metáfase/genética , Camundongos , Camundongos Endogâmicos C57BL , Mitose/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oócitos/citologia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Troca de Cromátide Irmã , Coesinas
20.
Biochem Biophys Res Commun ; 341(2): 363-8, 2006 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-16414009

RESUMO

Exposure of MDA-MB-468 cells to ionizing radiation (IR) caused biphasic activation of ERK as indicated by its phosphorylation at Thr202/Tyr204. Specific epidermal growth factor receptor (EGFR) inhibitor AG1478 and specific Src inhibitor PP2 inhibited IR-induced ERK1/2 activation but phosphatidylinositol-3 kinase inhibitor wortmannin did not. IR caused EGFR tyrosine phosphorylation, whereas it did not induce EGFR autophosphorylation at Tyr992, Tyr1045, and Tyr1068 or Src-dependent EGFR phosphorylation at Tyr845. SHP-2, which positively regulates EGFR/Ras/ERK signaling cascade, became activated by IR as indicated by its phosphorylation at Tyr542. This activation was inhibited by PP2 not by AG1478, which suggests Src-dependent activation of SHP-2. Src and PTPalpha, which positively regulates Src, became activated as indicated by phosphorylation at Tyr416 and Tyr789, respectively. These data suggest that IR-induced ERK1/2 activation involves EGFR through a Src-dependent pathway that is distinct from EGFR ligand activation.


Assuntos
Pirimidinas/farmacologia , Quinases da Família src/metabolismo , Androstadienos/farmacologia , Linhagem Celular Tumoral , Células Cultivadas , Relação Dose-Resposta à Radiação , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Fator de Crescimento Epidérmico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Immunoblotting , Imunoprecipitação , Raios Infravermelhos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Cinética , Ligantes , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Proteínas Tirosina Fosfatases/metabolismo , Quinazolinas , Radiação Ionizante , Transdução de Sinais , Temperatura , Fatores de Tempo , Ativação Transcricional , Tirosina/química , Tirfostinas/farmacologia , Wortmanina , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA