Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Phytoremediation ; 26(3): 405-415, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37578104

RESUMO

An experiment was carried out to explore the impact of petroleum hydrocarbons (PHs)-degrading microbial consortium (MC) on phytoremediation ability and growth of water hyacinth (WH) plants in water contaminated with lead (Pb) and PHs. Buckets (12-L capacity) were filled with water and WH plants, PHs (2,400 mg L-1) and Pb (10 mg L-1) in respective buckets. Plants were harvested after 30 days of transplanting and results showed that PHs and Pb substantially reduced the agronomic (up to 62%) and physiological (up to 49%) attributes of WH plants. However, the application of MC resulted in a substantial increase in growth (38%) and physiology (22%) of WH plants over uninoculated contaminated control. The WH + MC were able to accumulate 93% Pb and degrade/accumulate 72% of PHs as compared to initial concentration. Furthermore, combined use of WH plants and MC in co-contamination of PHs and Pb, reduced Pb and PHs contents in water by 74% and 68%, respectively, than that of initially applied concentration. Our findings suggest that the WH in combination with PHs-degrading MC could be a suitable nature-based water remediation technology for organic and inorganic contaminants and in future it can be used for decontamination of mix pollutants from water bodies.


Phytoremediation by aquatic macrophytes is a promising technique for the cleanup of environmental toxins from wastewater. To our knowledge, this is the first study reporting the integrated use of water hyacinth (WH) plants and a newly developed multi-trait microbial consortium for the simultaneous remediation of organic (i.e., petroleum hydrocarbons) and inorganic (i.e., lead) pollutants from the contaminated water. Findings of this study provide the basic but important information on the combined use of WH and microbes for remediation of mix pollution from water bodies.


Assuntos
Eichhornia , Petróleo , Poluentes do Solo , Biodegradação Ambiental , Chumbo , Hidrocarbonetos , Plantas , Poluentes do Solo/análise , Solo
2.
Int J Phytoremediation ; 23(9): 969-981, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33455421

RESUMO

Salinity is a widespread soil and underground water contaminant threatening food security and economic stability. Phytoremediation is an efficient and environmental-friendly solution to mitigate salinity impacts. The present study was conducted to evaluate the phytoremediation potential of five multipurpose trees: Vachellia nilotica, Concorpus erectus, Syzygium cumini, Tamarix aphylla and Eucalyptus cammaldulensis under four salinity treatments: Control, 10, 20 and 30 dS m-1. Salinity negatively impacted all the tested species. However, E. cammaldulensis and T. aphylla exhibited the lowest reduction (28%) and (35%) in plant height respectively along with a minimal reduction in leaf gas exchange while V. nilotica, S. cumini and C. erectus showed severe dieback. Similarly, the antioxidant enzymes increased significantly in E. cammaldulensis and T. aphylla as Superoxide Dismutase (87% and 79%), Catalase (66% and 67%) and Peroxidase (89% and 81%), respectively. Furthermore, both of these species maintained optimum Na/K ratio reducing the highest levels of soil ECe and SAR, suggesting the best phytoremediation potential. The present study identifies that E. cammaldulensis and T. aphylla showed effective tolerance mechanisms and the highest salt sequestration; therefore, may be used for phyto-amelioration of salinity impacted lands. Novelty statement Although previous studies evaluated the tolerance potential of many tree species, comparative and physiochemical evaluation of multipurpose tree species has been remained unexplored. In this scenario, eco-physiological characterization of multipurpose tree species may inform tree species for phytoremediation of saline soils according to the level of salinity. Optimizing tree species selection also improves the success of wood for energy and revenue generation while restoring degraded soils.


Assuntos
Poluentes do Solo , Solo , Biodegradação Ambiental , Salinidade , Árvores
3.
Int J Phytoremediation ; 23(7): 704-714, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33251852

RESUMO

Wastewater used as irrigation water is causing heavy metal accumulation in the agro-ecosystems. A greenhouse study was conducted to compare the phytoaccumulation ability of four agroforestry tree species under different wastewater treatments. Three-month-old potted seedlings of Morus alba, Acacia nilotica, Acacia ampliceps, and Azadirachta indica were irrigation with tap water (C), municipal wastewater (MWW), and industrial wastewater (IWW). Results showed that MWW had a positive and IWW had a negative impact on biomass production in all the species. Acacia ampliceps showed the highest increment (65%) and showed the lowest decrease (5%) in total biomass under both MWW and IWW treatment. Pb concentration was also found highest in the leaves, stem and roots of Azadirachta indica (108.5, 46.2, 180.5 mg kg-1, respectively) under IWW. Production of H2O2 was highest in IWW treatment with almost 148% increase observed in Azadirachta indica. Similarly, the production of antioxidative enzymes (Superoxide dismutase, Catalase and Peroxidase) was also highest in Azadirachta indica under IWW. Therefore, results suggest that along with high increment in total biomass, both Acacia ampliceps and Azadirachta indica showed high Pb concentration and an effective antioxidative defense mechanism and thus, can be used for planting in soils irrigated with MWW and IWW.


Assuntos
Poluentes do Solo , Águas Residuárias , Antioxidantes , Biodegradação Ambiental , Ecossistema , Peróxido de Hidrogênio , Chumbo , Poluentes do Solo/análise , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA