Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Public Health ; 113(1): 79-88, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36356280

RESUMO

Objectives. To compare 4 COVID-19 surveillance metrics in a major metropolitan area. Methods. We analyzed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in wastewater influent and primary solids in Raleigh, North Carolina, from April 10 through December 13, 2020. We compared wastewater results with lab-confirmed COVID-19 cases and syndromic COVID-like illness (CLI) cases to answer 3 questions: (1) Did they correlate? (2) What was the temporal alignment of the different surveillance systems? (3) Did periods of significant change (i.e., trends) align? Results. In the Raleigh sewershed, wastewater influent, wastewater primary solids, lab-confirmed cases, and CLI were strongly or moderately correlated. Trends in lab-confirmed cases and wastewater influent were observed earlier, followed by CLI and, lastly, wastewater primary solids. All 4 metrics showed sustained increases in COVID-19 in June, July, and November 2020 and sustained decreases in August and September 2020. Conclusions. In a major metropolitan area in 2020, the timing of and trends in municipal wastewater, lab-confirmed case, and syndromic case surveillance of COVID-19 were in general agreement. Public Health Implications. Our results provide evidence for investment in SARS-CoV-2 wastewater and CLI surveillance to complement information provided through lab-confirmed cases. (Am J Public Health. 2023;113(1):79-88. https://doi.org/10.2105/AJPH.2022.307108).


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Águas Residuárias , North Carolina/epidemiologia , Vigilância de Evento Sentinela , RNA Viral
2.
J Water Health ; 18(1): 8-18, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32129182

RESUMO

Human mitochondrial DNA (mtDNA) genetic markers are abundant in sewage and highly human-specific, suggesting a great potential for the environmental application as human fecal pollution indicators. Limited data are available on the occurrence and co-occurrence of human mtDNA with fecal bacterial markers in surface waters, and how the abundance of these markers is influenced by rain events. A 1-year sampling study was conducted in a suburban watershed impacted by human sewage contamination to evaluate the performance of a human mtDNA-based marker along with the bacterial genetic markers for human-associated Bacteroidales (BacHum and HF183) and Escherichia coli. Additionally, the human mtDNA-based assay was correlated with rain events and other markers. The mtDNA marker was detected in 92% of samples (n = 140) with a mean concentration of 2.96 log10 copies/100 ml throughout the study period. Human mtDNA was detected with greater abundance than human-associated Bacteroidales that could be attributed to differences in the decay of these markers in the environment. The abundance of all markers was positively correlated with rain events, and human mtDNA abundance was significantly correlated with various bacterial markers. In general, these results should support future risk assessment for impacted watersheds, particularly those affected by human fecal pollution, by evaluating the performance of these markers during rain events.


Assuntos
DNA Mitocondrial , Monitoramento Ambiental/métodos , Microbiologia da Água , Poluentes da Água/análise , Bacteroidetes , Fezes , Marcadores Genéticos , Humanos , Poluição da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA