Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 36(27): 7781-7788, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32545968

RESUMO

We discovered that several types of steroid hormones quench the fluorescence of quantum dots (QDs) at close proximity. Inspired by the finding, we developed a new type of biosensor for the sensitive detection of cortisol via direct fluorescence quenching of functionalized QD probes directly induced by the capture of target cortisol without additional reporter reagents. The detection selectivity was provided by cortisol-selective aptamers or anticortisol antibodies conjugated on the QD surfaces. With the magnetic nanoparticle labeling, the new sensing method enabled rapid cortisol sensing at physiologically relevant concentrations and yielded the detection limit of ∼1 nM for aptamer-based sensors and ∼100 pM for antibody-based sensors. We also evaluated the new detection method using saliva samples with an optimized sample preparation process under the assistance of magnetic manipulation. The result showed a satisfying recovery rate for spiked saliva tests. The facile sensing technology offers an appealing approach for the detection of steroid hormones in point-of-care settings.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Pontos Quânticos , Fluorescência , Hidrocortisona , Limite de Detecção , Espectrometria de Fluorescência
2.
Sci Rep ; 7(1): 2040, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28515467

RESUMO

Kirchhoff's law of thermal radiation, relating emissivity and absorptance is commonly formulated for opaque bodies in thermodynamic equilibrium with the environment. However, in many systems of practical importance, both assumptions are often not satisfied. We revisit the century-old law and examine the limits of its applicability in an example of Er:YAG and Er:YLF dielectric crystals-potential radiation converters for thermophotovoltaic applications. The (80 at.%) Er:YAG crystal is opaque between 1.45 µm and 1.64 µm. In this spectral range, its absorptance α(λ) is spectrally flat and differentiates from unity only by a small amount of reflection. The shape of the emissivity spectrum ɛ(λ) closely matches that of absorptance α(λ), implying that the Kirchhoff's law can adequately describe thermal radiation of opaque bodies, even if thermodynamic equilibrium is not satisfied. The (20 at.%) Er:YLF crystal had smaller size, lower concentration of Er ions, and it was not opaque. Nevertheless, its spectrum of emissivity had almost the same shape (between 1.45 µm and 1.62 µm) as the absorptance derived from the transmission measurements. Our results are consistent with the conclusion that the Kirchhoff's law of thermal radiation can be extended (with caution) to not-opaque bodies away from the thermodynamic equilibrium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA