Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1901, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429275

RESUMO

A sustainable supply of plant protein is critical for future generations and needs to be achieved while reducing green house gas emissions from agriculture and increasing agricultural resilience in the face of climate volatility. Agricultural diversification with more nutrient-rich and stress tolerant crops could provide the solution. However, this is often hampered by the limited availability of genomic resources and the lack of understanding of the genetic structure of breeding germplasm and the inheritance of important traits. One such crop with potential is winged bean (Psophocarpus tetragonolobus), a high seed protein tropical legume which has been termed 'the soybean for the tropics'. Here, we present a chromosome level winged bean genome assembly, an investigation of the genetic diversity of 130 worldwide accessions, together with two linked genetic maps and a trait QTL analysis (and expression studies) for regions of the genome with desirable ideotype traits for breeding, namely architecture, protein content and phytonutrients.


Assuntos
Fabaceae , Melhoramento Vegetal , Fabaceae/genética , Genômica , Agricultura , Glycine max
2.
Planta ; 250(3): 911-931, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30911885

RESUMO

MAIN CONCLUSION: Winged bean is popularly known as "One Species Supermarket" for its nutrient-dense green pods, immature seeds, tubers, leaves, and mature seeds. This underutilised crop has potential beneficial traits related to its biological nitrogen-fixation to support low-input farming. Drawing from past knowledge, and based on current technologies, we propose a roadmap for research and development of winged bean for sustainable food systems. Reliance on a handful of "major" crops has led to decreased diversity in crop species, agricultural systems and human diets. To reverse this trend, we need to encourage the greater use of minor, "orphan", underutilised species. These could contribute to an increase in crop diversity within agricultural systems, to improve human diets, and to support more sustainable and resilient food production systems. Among these underutilised species, winged bean (Psophocarpus tetragonolobus) has long been proposed as a crop for expanded use particularly in the humid tropics. It is an herbaceous perennial legume of equatorial environments and has been identified as a rich source of protein, with most parts of the plant being edible when appropriately prepared. However, to date, limited progress in structured improvement programmes has restricted the expansion of winged bean beyond its traditional confines. In this paper, we discuss the reasons for this and recommend approaches for better use of its genetic resources and related Psophocarpus species in developing improved varieties. We review studies on the growth, phenology, nodulation and nitrogen-fixation activity, breeding programmes, and molecular analyses. We then discuss prospects for the crop based on the greater understanding that these studies have provided and considering modern plant-breeding technologies and approaches. We propose a more targeted and structured research approach to fulfil the potential of winged bean to contribute to food security.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Fabaceae/crescimento & desenvolvimento , Produção Agrícola/tendências , Abastecimento de Alimentos/métodos , Previsões , Valor Nutritivo , Melhoramento Vegetal
3.
Genes (Basel) ; 8(3)2017 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-28282950

RESUMO

Winged bean (Psophocarpus tetragonolobus) is an herbaceous multipurpose legume grown in hot and humid countries as a pulse, vegetable (leaves and pods), or root tuber crop depending on local consumption preferences. In addition to its different nutrient-rich edible parts which could contribute to food and nutritional security, it is an efficient nitrogen fixer as a component of sustainable agricultural systems. Generating genetic resources and improved lines would help to accelerate the breeding improvement of this crop, as the lack of improved cultivars adapted to specific environments has been one of the limitations preventing wider use. A transcriptomic de novo assembly was constructed from four tissues: leaf, root, pod, and reproductive tissues from Malaysian accessions, comprising of 198,554 contigs with a N50 of 1462 bp. Of these, 138,958 (70.0%) could be annotated. Among 9682 genic simple sequence repeat (SSR) motifs identified (excluding monomer repeats), trinucleotide-repeats were the most abundant (4855), followed by di-nucleotide (4500) repeats. A total of 18 SSR markers targeting di- and tri-nucleotide repeats have been validated as polymorphic markers based on an initial assessment of nine genotypes originated from five countries. A cluster analysis revealed provisional clusters among this limited, yet diverse selection of germplasm. The developed assembly and validated genic SSRs in this study provide a foundation for a better understanding of the plant breeding system for the genetic improvement of winged bean.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA