Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Elife ; 122023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36803766

RESUMO

The essential role of store-operated Ca2+ entry (SOCE) through Ca2+ release-activated Ca2+ (CRAC) channels in T cells is well established. In contrast, the contribution of individual Orai isoforms to SOCE and their downstream signaling functions in B cells are poorly understood. Here, we demonstrate changes in the expression of Orai isoforms in response to B cell activation. We show that both Orai3 and Orai1 mediate native CRAC channels in B cells. The combined loss of Orai1 and Orai3, but not Orai3 alone, impairs SOCE, proliferation and survival, nuclear factor of activated T cells (NFAT) activation, mitochondrial respiration, glycolysis, and the metabolic reprogramming of primary B cells in response to antigenic stimulation. Nevertheless, the combined deletion of Orai1 and Orai3 in B cells did not compromise humoral immunity to influenza A virus infection in mice, suggesting that other in vivo co-stimulatory signals can overcome the requirement of BCR-mediated CRAC channel function in B cells. Our results shed important new light on the physiological roles of Orai1 and Orai3 proteins in SOCE and the effector functions of B lymphocytes.


Assuntos
Linfócitos B , Canais de Cálcio , Proteína ORAI1 , Animais , Camundongos , Linfócitos B/metabolismo , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo
2.
Sci Adv ; 8(40): eabn6552, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36206339

RESUMO

T cell activation and function depend on Ca2+ signals mediated by store-operated Ca2+ entry (SOCE) through Ca2+ release-activated Ca2+ (CRAC) channels formed by ORAI1 proteins. We here investigated how SOCE controls T cell function in pulmonary inflammation during a T helper 1 (TH1) cell-mediated response to influenza A virus (IAV) infection and TH2 cell-mediated allergic airway inflammation. T cell-specific deletion of Orai1 did not exacerbate pulmonary inflammation and viral burdens following IAV infection but protected mice from house dust mite-induced allergic airway inflammation. ORAI1 controlled the expression of genes including p53 and E2F transcription factors that regulate the cell cycle in TH2 cells in response to allergen stimulation and the expression of transcription factors and cytokines that regulate TH2 cell function. Systemic application of a CRAC channel blocker suppressed allergic airway inflammation without compromising immunity to IAV infection, suggesting that inhibition of SOCE is a potential treatment for allergic airway disease.


Assuntos
Canais de Cálcio , Vírus da Influenza A , Alérgenos , Animais , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Citocinas/metabolismo , Fatores de Transcrição E2F , Inflamação , Camundongos , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo
3.
J Gen Physiol ; 154(10)2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-35861698

RESUMO

Ca2+ signals regulate the function of many immune cells and promote immune responses to infection, cancer, and autoantigens. Ca2+ influx in immune cells is mediated by store-operated Ca2+ entry (SOCE) that results from the opening of Ca2+ release-activated Ca2+ (CRAC) channels. The CRAC channel is formed by three plasma membrane proteins, ORAI1, ORAI2, and ORAI3. Of these, ORAI1 is the best studied and plays important roles in immune function. By contrast, the physiological role of ORAI3 in immune cells remains elusive. We show here that ORAI3 is expressed in many immune cells including macrophages, B cells, and T cells. To investigate ORAI3 function in immune cells, we generated Orai3-/- mice. The development of lymphoid and myeloid cells in the thymus and bone marrow was normal in Orai3-/- mice, as was the composition of immune cells in secondary lymphoid organs. Deletion of Orai3 did not affect SOCE in B cells and T cells but moderately enhanced SOCE in macrophages. Orai3-deficient macrophages, B cells, and T cells had normal effector functions in vitro. Immune responses in vivo, including humoral immunity (T cell dependent or independent) and antitumor immunity, were normal in Orai3-/- mice. Moreover, Orai3-/- mice showed no differences in susceptibility to septic shock, experimental autoimmune encephalomyelitis, or collagen-induced arthritis. We conclude that despite its expression in myeloid and lymphoid cells, ORAI3 appears to be dispensable or redundant for physiological and pathological immune responses mediated by these cells.


Assuntos
Canais de Cálcio , Cálcio , Animais , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Imunidade , Linfócitos/metabolismo , Macrófagos/metabolismo , Camundongos , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo
4.
Nat Commun ; 13(1): 2033, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440113

RESUMO

TCR stimulation triggers Ca2+ signals that are critical for T cell function and immunity. Several pore-forming α and auxiliary ß subunits of voltage-gated Ca2+ channels (VGCC) were reported in T cells, but their mechanism of activation remains elusive and their contribution to Ca2+ signaling in T cells is controversial. We here identify CaVß1, encoded by Cacnb1, as a regulator of T cell function. Cacnb1 deletion enhances apoptosis and impairs the clonal expansion of T cells after lymphocytic choriomeningitis virus (LCMV) infection. By contrast, Cacnb1 is dispensable for T cell proliferation, cytokine production and Ca2+ signaling. Using patch clamp electrophysiology and Ca2+ recordings, we are unable to detect voltage-gated Ca2+ currents or Ca2+ influx in human and mouse T cells upon depolarization with or without prior TCR stimulation. mRNAs of several VGCC α1 subunits are detectable in human (CaV3.3, CaV3.2) and mouse (CaV2.1) T cells, but they lack transcription of many 5' exons, likely resulting in N-terminally truncated and non-functional proteins. Our findings demonstrate that although CaVß1 regulates T cell function, these effects are independent of VGCC channel activity.


Assuntos
Apoptose , Linfócitos T , Animais , Apoptose/genética , Canais de Cálcio Tipo L , Proliferação de Células/genética , Camundongos , Receptores de Antígenos de Linfócitos T
5.
Nat Immunol ; 23(2): 287-302, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35105987

RESUMO

The volume-regulated anion channel (VRAC) is formed by LRRC8 proteins and is responsible for the regulatory volume decrease (RVD) after hypotonic cell swelling. Besides chloride, VRAC transports other molecules, for example, immunomodulatory cyclic dinucleotides (CDNs) including 2'3'cGAMP. Here, we identify LRRC8C as a critical component of VRAC in T cells, where its deletion abolishes VRAC currents and RVD. T cells of Lrrc8c-/- mice have increased cell cycle progression, proliferation, survival, Ca2+ influx and cytokine production-a phenotype associated with downmodulation of p53 signaling. Mechanistically, LRRC8C mediates the transport of 2'3'cGAMP in T cells, resulting in STING and p53 activation. Inhibition of STING recapitulates the phenotype of LRRC8C-deficient T cells, whereas overexpression of p53 inhibits their enhanced T cell function. Lrrc8c-/- mice have exacerbated T cell-dependent immune responses, including immunity to influenza A virus infection and experimental autoimmune encephalomyelitis. Our results identify cGAMP uptake through LRRC8C and STING-p53 signaling as a new inhibitory signaling pathway in T cells and adaptive immunity.


Assuntos
Ânions/metabolismo , Fosfatos de Dinucleosídeos/metabolismo , Canais Iônicos/metabolismo , Proteínas de Membrana/metabolismo , Linfócitos T/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Cálcio/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Nucleotídeos Cíclicos/metabolismo , Transdução de Sinais/fisiologia
6.
Cell Calcium ; 90: 102227, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32563861

RESUMO

B lymphocytes are an important component of the adaptive and innate immune system because of their ability to secrete antibodies and to present antigens to T cells, which is critical for immune responses to many pathogens. Abnormal B cell function is the cause of diseases including autoimmune, paraneoplastic, and immunodeficiency disorders. The development, survival, and function of B cells depend on signaling through the B cell receptor (BCR) and costimulatory receptors. One of the signaling pathways induced by antigen binding to the BCR is store-operated Ca2+ entry (SOCE), which depends on the Ca2+ channel ORAI1 and its activators stromal interaction molecule (STIM) 1 and 2. A recent study by Berry et al. [1] reports that B cells lacking STIM1 and STIM2 fail to survive and proliferate because abolished SOCE results in impaired expression of two key anti-apoptotic genes and blunted activation of mTORC1 and c-Myc signaling. The associated Ca2+ regulated checkpoints of B cell survival and proliferation can be bypassed, at least partially, by costimulation through CD40 or TLR9. This study provides important new insights on how SOCE controls B cell function.


Assuntos
Linfócitos B/metabolismo , Cálcio/metabolismo , Animais , Linfócitos B/citologia , Sinalização do Cálcio , Proliferação de Células , Sobrevivência Celular , Humanos , Imunidade Humoral , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA