Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Angew Chem Int Ed Engl ; : e202404598, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38945836

RESUMO

Acetic acid (AA), a vital compound in chemical production and materials manufacturing, is conventionally synthesized by starting with coal or methane through multiple steps including high-temperature transformations. Here we present a new synthesis of AA from ethane through photocatalytic selective oxidation of ethane by H2O2 at 0-25°C. The catalyst designed for this process comprises g-C3N4 with anchored Pd1 single-atom sites. In-situ studies and computational simulation suggest the immobilized Pd1 atom becomes positively charged under photocatalytic condition. Under photoirradiation, the holes on the Pd1 single-atom of OH-Pd1Å/g-C3N4 serves as a catalytic site for activating a C-H instead of C-C of C2H6 with a low activation barrier of 0.14 eV, through a concerted mechanism. Remarkably, the selectivity for synthesizing AA reaches 98.7%, achieved under atmospheric pressure of ethane at 0°C. By integrating photocatalysis with thermal catalysis, we introduce a highly selective, environmentally friendly, energy-efficient synthetic route for AA, starting from ethane, presenting a promising alternative for AA synthesis. This integration of photocatalysis in low-temperature oxidation demonstrates a new route of selective oxidation of light alkanes.

2.
Rev Sci Instrum ; 95(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38717277

RESUMO

Here a sealing-style x-ray photoelectron spectroscopy study of the surface of a 1.0 wt. %Ni/TiO2 nanoparticle catalyst in a flowing mixture of CO and O2 at 1 bar was performed with a graphene membrane-sealed Si3N4 window-based miniature cell. We report the details on how a commercial Si3N4 window is modified before assembling a graphene membrane, how single-layer graphene membranes are transferred from their metal supports to the modified Si3N4 window, how a modified Si3N4 window covered with a double-layer graphene membrane is assembled onto a blank cell cap, how a nanoparticle catalyst is introduced to the cell cap and then the cell cap is installed onto a cell body to form a complete reaction cell, and how a complete cell is interfaced with a high vacuum chamber of an XPS system before an XPS study of 1.0 wt. %Ni/TiO2 catalyst surface in a flowing mixture for 0.2 bar CO and 0.8 bar O2 is performed. How the characterization of a catalyst using this type of graphene membrane-sealed Si3N4 window-based miniature cell is relevant to the finding of the actual surface chemistry of a catalyst during catalysis is discussed.

3.
ACS Appl Mater Interfaces ; 16(17): 21757-21770, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38632669

RESUMO

We have synthesized Pt1Zn3/ZnO, also termed 0.01 wt %Pt/ZnO-O2-H2, as a catalyst containing singly dispersed single-atom bimetallic sites, also called a catalyst of singly dispersed bimetallic sites or a catalyst of isolated single-atom bimetallic sites. Its catalytic activity in partial oxidation of methanol to hydrogen at 290 °C is found to be 2-3 orders of magnitude higher than that of Pt-Zn bimetallic nanoparticles supported on ZnO, 5.0 wt %Pt/ZnO-N2-H2. Selectivity for H2 on Pt1Zn3/ZnO reaches 96%-100% at 290-330 °C, arising from the uniform coordination environment of single-atom Pt1 in singly dispersed single-atom bimetallic sites, Pt1Zn3 on 0.01 wt %Pt/ZnO-O2-H2, which is sharply different from various coordination environments of Pt atoms in coexisting PtxZny (x ≥ 0, y ≥ 0) sites on Pt-Zn bimetallic nanoparticles. Computational simulations attribute the extraordinary catalytic performance of Pt1Zn3/ZnO to the stronger adsorption of methanol and the lower activation barriers in O-H dissociation of CH3OH, C-H dissociations of CH2O to CO, and coupling of intermediate CO with atomic oxygen to form CO2 on Pt1Zn3/ZnO as compared to those on Pt-Zn bimetallic nanoparticles. It demonstrates that anchoring uniform, isolated single-atom bimetallic sites, also called singly dispersed bimetallic sites on a nonmetallic support can create new catalysts for certain types of reactions with much higher activity and selectivity in contrast to bimetallic nanoparticle catalysts with coexisting, various metallic sites MxAy (x ≥ 0, y ≥ 0). As these single-atom bimetallic sites are cationic and anchored on a nonmetallic support, the catalyst of singly dispersed single-atom bimetallic sites is different from a single-atom alloy nanoparticle catalyst. The critical role of the 0.01 wt %Pt in the extraordinary catalytic performance calls on fundamental studies of the profound role of a trace amount of a metal in heterogeneous catalysis.

4.
Rev Sci Instrum ; 94(5)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37255372

RESUMO

Numerous important catalytic reactions, such as Fischer-Tropsch synthesis (FTS), are performed under harsh conditions in terms of high temperature of a catalyst in a mixture of reactants at a high pressure. There has been a lack of an intrinsic correlation between a catalytic performance and its corresponding catalyst structure due to the unavailable information on the authentic structure of the catalyst during catalysis under a high-temperature high-pressure (HTHP) condition. Here, we report in situ/operando studies of Co catalysts during catalysis under HTHP conditions using x-ray absorption spectroscopy (XAS). A high-temperature high-pressure catalysis-XAS (HTHP Catalysis-XAS) system using a thin, small quartz or beryllium tube as the reactor was built for in situ/operando characterization of high-energy absorption edges of 4d transition metals or low-energy absorption edges of 3d/4d transition metals under high-temperature high-pressure conditions, respectively. This reactor can be used for HTHP catalysis performed at a temperature of up to 550 °C and a gas pressure of up to 60 bars for uncovering the chemical states and coordination environments of metal atoms of these catalysts during HTHP catalysis. The capability of collecting XAS data during HTHP catalysis was confirmed through tests at 400oC in the mixture of 20 bar mixture of reactants at beamline endstation. The operando studies of Ru catalyst particles under Fischer-Tropsch catalytic conditions with extended x-ray absorption fine structure spectroscopy revealed a restructuring of the Ru catalyst at 250 °C in the mixture of 6 bars CO and 12 bars H2 during FTS (30 ml/min), which was not observed at 300 °C in 1 bar H2 (20 ml/min). This observation suggests new chemistry for metal catalysts under HTHP condition inaccessible due to a lack of applicable characterizations. These tests confirmed the function of this HTHP Catalysis-XAS system for in situ/operando characterizations of catalysts during HTHP catalysis.

5.
Angew Chem Int Ed Engl ; 62(15): e202214332, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36749904

RESUMO

C-N coupling is significant for the synthesis of fine chemicals toward various applications. Hydroaminoalkylation of olefins is a tandem reaction of C-N coupling involving first the formation of an aldehyde through hydroformylation of an olefin and then the production of amine through reductive amination of the aldehyde. Here we report a stable, supported catalyst of singly dispersed Rh1 atoms anchored on TiO2 (P25) nanoparticles designated as Rh1 /P25. Its high activity for C-N coupling was demonstrated by six hydroaminoalkylations of olefins and amines with selectivity of higher than 90% for producing tertiary amines. The singly dispersed Rh1 O4 on P25 exhibit activity and selectivity for hydroaminoalkylation comparable or even higher than some reported molecular catalysts. In contrast to molecular catalysts, the Rh-based single-atom Rh heterogeneous catalysis (Rh1 /P25) can be readily separated from reactants and products, reused for multiple runs of hydroaminoalkylation, and recycled with a low cost.

6.
Phys Chem Chem Phys ; 25(5): 4070-4080, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36651173

RESUMO

Catalytic reforming of methane to produce syngas is an important strategy for producing value-added chemicals. The conventional reforming catalyst relies on supported nickel nanoparticles. In this work, we investigated singly dispersed Rh cations anchored on a CeO2 catalyst (Rh1/CeO2) for high activity and selectivity towards the production of syngas via partial oxidation of methane (POM) in the temperature range of 600-700 °C. The yields of H2 and CO at 700 °C are 83% and 91%, respectively. The anchored Rh1 atoms on CeO2 of Rh1/CeO2 are in the cationic state, and on an average each Rh1 atom coordinates with 4-5 surface lattice oxygen atoms of CeO2. Compared to inert CeO2 for POM, via the incorporation of single-atom sites, Rh1 modifies the electronic state of oxygen atoms proximal to the Rh1 atoms and thus triggers the catalytic activity of CeO2. The high activity of single-atom catalyst Rh1/CeO2 suggests that the incorporation of single atoms of transition metals to the surface of a reducible oxide can modulate the electronic state of proximal anions of the oxide support toward forming an electronic state favorable for the selective formation of ideal products.

7.
J Am Chem Soc ; 145(1): 392-401, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36548635

RESUMO

Heterogeneous catalysis is key for chemical transformations. Understanding how catalysts' active sites dynamically evolve at the atomic scale under reaction conditions is a prerequisite for accurately determining catalytic mechanisms and predictably developing catalysts. We combine in situ time-dependent scanning tunneling microscopy observations and machine-learning-accelerated first-principles atomistic simulations to uncover the mechanism of restructuring of Pt catalysts under a pressure of carbon monoxide (CO). We show that a high CO coverage at a Pt step edge triggers the formation of atomic protrusions of low-coordination Pt atoms, which then detach from the step edge to create sub-nano-islands on the terraces, where under-coordinated sites are stabilized by the CO adsorbates. The fast and accurate machine-learning potential is key to enabling the exploration of tens of thousands of configurations for the CO-covered restructuring catalyst. These studies open an avenue to achieve an atomic-scale understanding of the structural dynamics of more complex metal nanoparticle catalysts under reaction conditions.

8.
Chem Soc Rev ; 51(1): 376-423, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34904592

RESUMO

In the last few decades, worldwide scientists have been motivated by the promising production of chemicals from the widely existing methane (CH4) under mild conditions for both chemical synthesis with low energy consumption and climate remediation. To achieve this goal, a whole library of catalytic chemistries of transforming CH4 to various products under mild conditions is required to be developed. Worldwide scientists have made significant efforts to reach this goal. These significant efforts have demonstrated the feasibility of oxidation of CH4 to value-added intermediate compounds including but not limited to CH3OH, HCHO, HCOOH, and CH3COOH under mild conditions. The fundamental understanding of these chemical and catalytic transformations of CH4 under mild conditions have been achieved to some extent, although currently neither a catalyst nor a catalytic process can be used for chemical production under mild conditions at a large scale. In the academic community, over ten different reactions have been developed for converting CH4 to different types of oxygenates under mild conditions in terms of a relatively low activation or catalysis temperature. However, there is still a lack of a molecular-level understanding of the activation and catalysis processes performed in extremely complex reaction environments under mild conditions. This article reviewed the fundamental understanding of these activation and catalysis achieved so far. Different oxidative activations of CH4 or catalytic transformations toward chemical production under mild conditions were reviewed in parallel, by which the trend of developing catalysts for a specific reaction was identified and insights into the design of these catalysts were gained. As a whole, this review focused on discussing profound insights gained through endeavors of scientists in this field. It aimed to present a relatively complete picture for the activation and catalytic transformations of CH4 to chemicals under mild conditions. Finally, suggestions of potential explorations for the production of chemicals from CH4 under mild conditions were made. The facing challenges to achieve high yield of ideal products were highlighted and possible solutions to tackle them were briefly proposed.


Assuntos
Metano , Catálise , Oxirredução , Temperatura
9.
J Am Chem Soc ; 143(40): 16566-16579, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34590856

RESUMO

Single-atom catalysts are a relatively new type of catalyst active for numerous reactions but mainly for chemical transformations performed at low or intermediate temperatures. Here we report that singly dispersed Rh1O5 clusters on TiO2 can catalyze the partial oxidation of methane (POM) at high temperatures with a selectivity of 97% for producing syngas (CO + H2) and high activity with a long catalytic durability at 650 °C. The long durability results from the substitution of a Ti atom of the TiO2 surface lattice by Rh1, which forms a singly dispersed Rh1 atom coordinating with five oxygen atoms (Rh1O5) and an undercoordinated environment but with nearly saturated bonding with oxygen atoms. Computational studies show the back-donation of electrons from the dz2 orbital of the singly dispersed Rh1 atom to the unoccupied orbital of adsorbed CHn (n > 1) results in the charge depletion of the Rh1 atom and a strong binding of CHn to Rh1. This strong binding decreases the barrier for activating C-H, thus leading to high activity of Rh1/TiO2. A cationic Rh1 single atom anchored on TiO2 exhibits a weak binding to atomic carbon, in contrast to the strong binding of the metallic Rh surface to atomic carbon. The weak binding of atomic carbon to Rh1 atoms and the spatial isolation of Rh1 on TiO2 prevent atomic carbon from coupling on Rh1/TiO2 to form carbon layers, making Rh1/TiO2 resistant to carbon deposition than supported metal catalysts for POM. The highly active, selective, and durable high-temperature single-atom catalysis performed at 650 °C demonstrates an avenue of application of single-atom catalysis to chemical transformations at high temperatures.

10.
Nano Lett ; 20(9): 6255-6262, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32830505

RESUMO

Here, we report that a cationic bimetallic site consisting of one Pd and three Zn atoms (Pd1Zn3) supported on ZnO (Pd1Zn3/ZnO) exhibits an extraordinarily high catalytic activity for the generation of H2 through methanol partial oxidation (MPO) that is 2-3 orders of magnitude higher than that of a metallic Pd-Zn site on Pd-Zn nanoalloy (Pd-Zn/ZnO). Computational studies uncovered that the positively charged Pd atom of the subnanometer Pd1Zn3 bimetallic site largely decreases the activation barrier for dehydrogenation of methanol as compared to a metallic Pd atom of Pd-Zn alloy, thus switching the rate-determining step of MPO from methanol dehydrogenation over a Pd-Zn alloy with high barrier to the O2 dissociation step on a cationic Pd1Zn3 site with a low barrier, which is supported by our kinetics studies. The significantly higher catalytic activity and selectivity for H2 production over a cationic bimetallic site suggest a new approach to design bimetallic catalysts.

11.
Chemphyschem ; 20(17): 2217-2220, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31313443

RESUMO

Methane chemisorption has been recently demonstrated on the rutile IrO2 (110) surface. However, it remains unclear how the general requirements are for methane chemisorption or complexation with a single atom on an oxide surface. By exploring methane adsorption on Pt1 substitutionally doped on many rutile-type oxides using hybrid density functional theory, we show that the occupancy of the Pt dz2 orbital is the key to methane chemisorption. Pt single atom on the semiconducting or wide-gap oxides such as TiO2 and GeO2 strongly chemisorbs methane, because the empty Pt dz2 orbital is located in the gap and can effectively accept σ-electron donation from the methane C-H bond. In contrast, Pt single atom on metallic oxides such as IrO2 and RuO2 does not chemisorb methane, because the Pt dz2 orbital strongly mixes with the support-oxide electronic states and become more occupied, losing its ability to chemisorb methane. This study sheds further light on the impact of the interaction between a Pt single atom and the oxide support on methane adsorption.

12.
Chem Rev ; 119(12): 6822-6905, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31181905

RESUMO

Heterogeneous catalysis occurs on the surface of a catalyst particle in a gas or liquid environment of reactants. The surface of the catalyst particle acts as an active chemical agent directly participating in a chemical reaction performed at a solid-gas or solid-liquid interface. Thus, authentic surface chemistry and the structure of a catalyst particle during catalysis are key descriptors for understanding catalytic performance of this catalyst. However, identification of the authentic surface of a catalyst particle during catalysis is not a simple task. We are far from knowing the fact. Photoelectron spectroscopy is one of the main techniques for characterizing surface of a catalyst since it's a surface sensitive technique. When used to track the surface of a catalyst particle at relatively high temperature in gas phase in the torr pressure range, it is called near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) or AP-XPS for simplicity. In the last several years, AP-XPS has been used to observe surface chemistry of catalysts of single crystals and nanoparticles of metal, metal oxide, and carbide. In this review, instrumentation of the near ambient pressure X-ray photoelectron spectrometers and observation of catalyst surfaces in gases phase under reaction conditions and during catalysis with AP-XPS are discussed with the following objectives: (1) to present how the surface of a catalyst particle can be characterized in gas phase, (2) to interpret how surface chemistries observed during catalysis are correlated with measured catalytic performances, (3) to demonstrate how the uncovered correlations between surface structures and catalytic performances help to understand catalytic mechanisms at a molecular level, and (4) to discuss challenges and prospects of using AP-XPS to explore the authentic surface of a catalyst under a condition near to an industrial catalytic condition. This review focuses on the application of AP-XPS to studies of catalysis and how the insights gained from AP-XPS studies can be used to achieve fundamental understanding of the catalytic mechanism at a molecular level.

13.
J Am Chem Soc ; 141(18): 7283-7293, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-31021087

RESUMO

Heterogeneous catalysis performs on specific sites of a catalyst surface even if specific sites of many catalysts during catalysis could not be identified readily. Design of a catalyst by managing catalytic sites on an atomic scale is significant for tuning catalytic performance and offering high activity and selectivity at a relatively low temperature. Here, we report a synergy effect of two sets of single-atom sites (Ni1 and Ru1) anchored on the surface of a CeO2 nanorod, Ce0.95Ni0.025Ru0.025O2. The surface of this catalyst, Ce0.95Ni0.025Ru0.025O2, consists of two sets of single-atom sites which are highly active for reforming CH4 using CO2 with a turnover rate of producing 73.6 H2 molecules on each site per second at 560 °C. Selectivity for producing H2 at this temperature is 98.5%. The single-atom sites Ni1 and Ru1 anchored on the CeO2 surface of Ce0.95Ni0.025Ru0.025O2 remain singly dispersed and in a cationic state during catalysis up to 600 °C. The two sets of single-atom sites play a synergistic role, evidenced by lower apparent activation barrier and higher turnover rate for production of H2 and CO on Ce0.95Ni0.025Ru0.025O2 in contrast to Ce0.95Ni0.05O2 with only Ni1 single-atom sites and Ce0.95Ru0.05O2 with only Ru1 single-atom sites. Computational studies suggest a molecular mechanism for the observed synergy effects, which originate at (1) the different roles of Ni1 and Ru1 sites in terms of activations of CH4 to form CO on a Ni1 site and dissociation of CO2 to CO on a Ru1 site, respectively and (2) the sequential role in terms of first forming H atoms through activation of CH4 on a Ni1 site and then coupling of H atoms to form H2 on a Ru1 site. These synergistic effects of the two sets of single-atom sites on the same surface demonstrated a new method for designing a catalyst with high activity and selectivity at a relatively low temperature.

14.
J Am Chem Soc ; 141(19): 7990-7999, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31021093

RESUMO

The water gas shift (WGS) reaction is of paramount importance for the chemical industry, as it constitutes, coupled with methane reforming, the main industrial route to produce hydrogen. Copper-chromium-iron oxide-based catalysts have been widely used for the high-temperature WGS reaction industrially. The WGS reaction mechanism by the CuCrFeO x catalyst has been debated for years, mainly between a "redox" mechanism involving the participation of atomic oxygen from the catalyst and an "associative" mechanism proceeding via a surface formate-like intermediate. In the present work, advanced in situ characterization techniques (infrared spectroscopy, temperature-programmed surface reaction (TPSR), near-ambient pressure XPS (NAP-XPS), and inelastic neutron scattering (INS)) were applied to determine the nature of the catalyst surface and identify surface intermediate species under WGS reaction conditions. The surface of the CuCrFeO x catalyst is found to be dynamic and becomes partially reduced under WGS reaction conditions, forming metallic Cu nanoparticles on Fe3O4. Neither in situ IR not INS spectroscopy detect the presence of surface formate species during WGS. TPSR experiments demonstrate that the evolution of CO2 and H2 from the CO/H2O reactants follows different kinetics than the evolution of CO2 and H2 from HCOOH decomposition (molecule mimicking the associative mechanism). Steady-state isotopic transient kinetic analysis (SSITKA) (CO + H216O → CO + H218O) exhibited significant 16O/18O scrambling, characteristic of a redox mechanism. Computed activation energies for elementary steps for the redox and associative mechanism by density functional theory (DFT) simulations indicate that the redox mechanism is favored over the associative mechanism. The combined spectroscopic, computational, and kinetic evidence in the present study finally resolves the WGS reaction mechanism on the industrial-type high-temperature CuCrFeO x catalyst that is shown to proceed via the redox mechanism.

15.
Angew Chem Int Ed Engl ; 57(51): 16672-16677, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30328259

RESUMO

The majority of harmful atmospheric CO and NOx emissions are from vehicle exhausts. Although there has been success addressing NOx emissions at temperatures above 250 °C with selective catalytic reduction technology, emissions during vehicle cold start (when the temperature is below 150 °C), are a major challenge. Herein, we show we can completely eliminate both CO and NOx emissions simultaneously under realistic exhaust flow, using a highly loaded (2 wt %) atomically dispersed palladium in the extra-framework positions of the small-pore chabazite material as a CO and passive NOx adsorber. Until now, atomically dispersed highly loaded (>0.3 wt %) transition-metal/SSZ-13 materials have not been known. We devised a general, simple, and scalable route to prepare such materials for PtII and PdII . Through spectroscopy and materials testing we show that both CO and NOx can be simultaneously completely abated with 100 % efficiency by the formation of mixed carbonyl-nitrosyl palladium complex in chabazite micropore.

16.
ACS Appl Mater Interfaces ; 10(44): 38134-38140, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30360084

RESUMO

Identification of the chemical states of catalytic sites is critical for an atomic-level understanding of catalytic mechanisms. Herein, hydrogen thermal pretreatment of the Pt single atoms on porous nanorods of CeO2 (Pt1/ PN-CeO2) induced the formation of isolated bimetallic PtCe sites as a new type of active center for CO oxidation. The evolutions of Pt1/ PN-CeO2 catalysts during the hydrogen pretreatment and CO oxidation were examined by various in situ techniques including infrared, ambient-pressure X-ray photoelectron and X-ray absorption spectroscopy. The experimental results demonstrate that these bimetallic sites can be partially preserved or reoxidized into Pt-O-Ce with a low coordination number with oxygen under realistic conditions, leading to the appropriate CO adsorption and activating the efficient activity of Pt1/ PN-CeO2 for CO oxidation at low temperature.

17.
Chem Commun (Camb) ; 54(71): 9981-9984, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30123913

RESUMO

Studying surface of catalyst nanoparticles in a flowing liquid is important for understanding the underlying mechanism of a reaction performed in liquid. We report the design of a reaction cell system of Si3N4 window covering the flowing liquid with an electron-transmissible membrane. By using metal nanoparticles as a catalyst dispersed in a solvent, examination of the surface of catalyst nanoparticles in a flowing liquid was demonstrated by observation of Ag 3d photoemission feature when a liquid containing Ag nanoparticles was flowing through this system.

18.
Sci Adv ; 4(8): eaar5418, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30105302

RESUMO

Progress in heterogeneous catalysis is often hampered by the difficulties of constructing active architectures and understanding reaction mechanisms at the molecular level due to the structural complexity of practical catalysts, in particular for multicomponent catalysts. Although surface science experiments and theoretical simulations help understand the detailed reaction mechanisms over model systems, the direct study of the nature of nanoparticle catalysts remains a grand challenge. This paper describes a facile construction of well-defined Pt-skin catalysts modified by different 3d transition metal (3dTM) atoms in subsurface regions. However, on the catalyst containing both surface and subsurface 3dTMs, the selectivity of propane dehydrogenation decreases in the sequences of Pt ~ PtFe > PtCo > PtNi due to the easier C-C cracking on exposed Co and Ni sites. After the exposed 3dTMs were removed completely, the C3H6 selectivity was found to increase markedly in the row Pt < PtNi@Pt < PtCo@Pt < PtFe@Pt, which is in line with the calculated trend of d-band center shifting. The established relationship between reactivity and d-band center shifting illustrates the role of subsurface catalysis in dehydrogenation reaction.

19.
Phys Chem Chem Phys ; 20(35): 22909-22914, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30152484

RESUMO

Catalytic transformation of methane under mild conditions remains a grand challenge. Fundamental understanding of C-H activation of methane is crucial for designing a catalyst for the utilization of methane at low temperature. Recent experiments show that strong methane chemisorption on oxides of precious metals leads to facile C-H activation. However, only a very few such oxides are capable (for example, IrO2 and PdO). Here we show for the first time that strong methane chemisorption and facile C-H activation can be accomplished by single transition-metal atoms on TiO2, some of which are even better than IrO2. Using methane adsorption energy as a descriptor, we screened over 30 transition-metal single atoms doped on TiO2 for the chemisorption of methane by replacing a surface Ti atom with a single atom of another transition metal. It is found that the adsorption energies of methane on a single atom of Pd, Rh, Os, Ir, and Pt doped on rutile TiO2(110) are greater than or similar to those on rutile IrO2(110), a benchmark for the chemisorption of methane on transition oxides. Electronic structure analysis uncovered orbital overlap and mixing between methane and the single atom, as well as significant localization of the charge between the molecule and the surface, demonstrating chemical bonding of CH4 to doped single atoms. Facile C-H dissociation has been found on the single-atom sites with the transition state energies lower than desorption energies. Our computational studies predict that Pd, Rh, Os, Ir, and Pt single atoms on rutile TiO2(110) can activate C-H of methane at a temperature lower than 25 °C.

20.
Rev Sci Instrum ; 89(5): 054103, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29864830

RESUMO

Transition metal elements are the most important elements of heterogeneous catalysts used for chemical and energy transformations. Many of these catalysts are active at a temperature higher than 400 °C. For a catalyst containing a 3d or 5d metal element with a low concentration, typically their released fluorescence upon the K-edge or L-edge adsorption of X-rays is collected for the analysis of chemical and coordination environments of these elements. However, it is challenging to perform in situ/operando X-ray absorption spectroscopy (XAS) studies of elements of low-energy absorption edges at a low concentration in a catalyst during catalysis at a temperature higher than about 450 °C. Here a unique reaction system consisting two reactors, called a dual reactor system, was designed for performing in situ or operando XAS studies of these elements of low-energy absorption edges in a catalyst at a low concentration during catalysis at a temperature higher than 450 °C in a fluorescent mode. This dual-reactor system contains a quartz reactor for preforming high-temperature catalysis up to 950 °C and a Kapton reactor remaining at a temperature up to 450 °C for collecting data in the same gas of catalysis. With this dual reactor, chemical and coordination environments of low-concentration metal elements with low-energy absorption edges such as the K-edge of 3d metals including Ti, V, Cr, Mn, Fe, Co, Ni, and Cu and L edge of 5d metals including W, Re, Os, Ir, Pt, and Au can be examined through first performing catalysis at a temperature higher than 450 °C in the quartz reactor and then immediately flipping the catalyst in the same gas flow to the Kapton reactor remained up to 450 °C to collect data. The capability of this dual reactor was demonstrated by tracking the Mn K-edge of the MnOx/Na2WO4 catalyst during activation in the temperature range of 300-900 °C and catalysis at 850 °C.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA