Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Opt Express ; 32(10): 18087-18098, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38858973

RESUMO

In this paper, a highly sensitive sensor consisting of a silicon nanorod and symmetric rings (SNSR) is presented. Theoretically, three Fano resonances with high Q-factors are excited in the near-infrared range by breaking the symmetry structure based on quasi-bound states in the continuum (Q-BICs). The electromagnetic near-field analysis confirms that the resonances are mainly controlled by toroidal dipole (TD) resonance. The structure is optimized by adjusting different geometrical parameters, and the maximum Q-factor of the Fano resonances can reach 7427. To evaluate the sensing performance of the structure, the sensitivity and the figure of merit (FOM) are calculated by adjusting the environmental refractive index: the maximum sensitivity of 474 nm/RIU and the maximum FOM of 3306 RIU-1. The SNSR can be fabricated by semiconductor-compatible processes, which is experimentally evaluated for changes in transmission spectra at different solution concentrations. The results show that the sensitivity and the Q-factor of the designed metasurface can reach 295 nm/RIU and 850, while the FOM can reach 235 RIU-1. Therefore, the metasurface of SNSR is characterized by high sensitivity and multi-wavelength sensing, which are current research hotspots in the field of optics and can be applied to biomedical sensing and multi-target detection.

2.
Sensors (Basel) ; 24(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38931726

RESUMO

This article shows an all-dielectric metasurface consisting of "H"-shaped silicon disks with tilted splitting gaps, which can detect the temperature and refractive index (RI). By introducing asymmetry parameters that excite the quasi-BIC, there are three distinct Fano resonances with nearly 100% modulation depth, and the maximal quality factor (Q-factor) is over 104. The predominant roles of different electromagnetic excitations in three distinct modes are demonstrated through near-field analysis and multipole decomposition. A numerical analysis of resonance response based on different refractive indices reveals a RI sensitivity of 262 nm/RIU and figure of merit (FOM) of 2183 RIU-1. This sensor can detect temperature fluctuations with a temperature sensitivity of 59.5 pm/k. The proposed metasurface provides a novel method to induce powerful TD resonances and offers possibilities for the design of high-performance sensors.

3.
J Dairy Sci ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38762104

RESUMO

Milk fan cheese, a type of stretched -cheese, presents challenges in its stretch-forming. This study investigated the impacts of complex phosphates (sodium tripolyphosphate and sodium dihydrogen phosphate, STPP-DSP) on the gelling properties of acid-induced milk fan gel and the mechanisms contributing to its stretch-forming. The treatment of milk fan gel with STPP-DSP resulted in improved functional and textural properties compared with the control group. In particular, drawing length increased significantly from 69.67 nm to 80.33 nm, and adhesiveness increased from 1737.89 g/mm to 1969.79 g/mm. The addition of STPP-DSP also led to increased viscosity, elastic modulus (G'), and viscous modulus (G"). Microstructural analysis revealed the formation of a fibrous structure within the gel after STPP-DSP treatment, facilitating uniform embedding of fat globules and emulsification. Structural analysis showed that the addition of STPP-DSP increased ß-fold and decreased random coiling of the gel, facilitating the unfolding of protein structures. Additionally, UV absorption spectroscopy and excitation-emission matrix spectroscopy results indicated the formation of a chelate between STPP-DSP and milk fan gel, increasing protein-protein molecular interactions. Evidence from differential scanning calorimetry and x-ray diffraction demonstrated the formation of sodium caseinate chelate. Fourier transform infrared spectroscopy and zeta potential analysis revealed that the sodium caseinate chelate formed through hydrophobicity, hydrogen bonding, and electrostatic forces. These findings provided theoretical insights into how phosphates can improve the stretch-forming of milk fan gel, facilitating the application of phosphate additives in stretched -cheese processing.

4.
Micromachines (Basel) ; 15(4)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38675285

RESUMO

Ozone (O3) is a critical gas in various industrial applications, particularly in semiconductor manufacturing, where it is used for wafer cleaning and oxidation processes. Accurate and reliable detection of ozone concentration is essential for process control, ensuring product quality, and safeguarding workplace safety. By studying the UV absorption characteristics of O3 and combining the specific operational needs of semiconductor process gas analysis, a pressure-insensitive ozone gas sensor has been developed. In its optical structure, a straight-through design without corners was adopted, achieving a coupling efficiency of 52% in the gas chamber. This device can operate reliably in a temperature range from 0 °C to 50 °C, with only ±0.3% full-scale error across the entire temperature range. The sensor consists of a deep ultraviolet light-emitting diode in a narrow spectrum centered at 254 nm, a photodetector, and a gas chamber, with dimensions of 85 mm × 25 mm × 35 mm. The performance of the sensor has been meticulously evaluated through simulation and experimental analysis. The sensor's gas detection accuracy is 750 ppb, with a rapid response time (t90) of 7 s, and a limit of detection of 2.26 ppm. It has the potential to be applied in various fields for ozone monitoring, including the semiconductor industry, water treatment facilities, and environmental research.

5.
Biomed Opt Express ; 15(4): 2406-2418, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38633064

RESUMO

A multi-function sensor based on an all-dielectric metastructure for temperature and refractive index sensing simultaneously is designed and analyzed in this paper. The structure is composed of a periodic array of silicon dimers placed on the silicon dioxide substrate. By breaking the symmetry of the structure, the ideal bound states in the continuum can be converted to the quasi-bound states in the continuum, and three Fano resonances are excited in the near-infrared wavelength. Combining with the electromagnetic field distributions, the resonant modes of three Fano resonances are analyzed as magnetic dipole, magnetic toroidal dipole, and electric toroidal dipole, respectively. The proposed sensor exhibits an impressive maximal Q-factor of 9352, with a modulation depth approaching 100%. Our investigation into temperature and refractive index sensing properties reveals a maximum temperature sensitivity of 60 pm/K. Regarding refractive index sensing, the sensitivity and figure of merit are determined to be 279.5 nm/RIU and 2055.1 RIU-1, respectively. These findings underscore the potential of the all-dielectric metastructure for simultaneous multi-parameter measurements. The sensor's versatility suggests promising applications in biological and chemical sensing.

6.
Micromachines (Basel) ; 15(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38542542

RESUMO

Metal oxide gas sensors usually require a few tens of milliwatts of power consumption to operate at high temperature, which limits their application in mobile and portable devices. Here, we proposed a cantilever structure to build an ultra-low power gas sensor for hydrogen sulfide gas detection. By employing a nano-film size effect to reduce the thermal conductivity of the material, and self-heated corrugation configuration, the power consumption of the gas sensor is significantly reduced. Through numerical analysis and finite element simulation, two different gas sensors were designed and the power consumption and stress distribution were analyzed and optimized. Under the operating temperature of 200 °C, only 0.27 mW power is consumed, the stress value is less than 250 MPa and the displacement is a few hundred of nanometers. The results serve as a guide and reference for ultra-low power MEMS device designs.

7.
Micromachines (Basel) ; 14(11)2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-38004867

RESUMO

In this paper, we demonstrate a multi-functional metasurface for microwave beam-shaping application. The metasurface consists of an array of programmable unit cells, and each unit cell is integrated with one varactor diode. By turning the electrical bias on the diode on and off, the phase delay of the microwave reflected by the metasurface can be switched between 0 and π at a 6.2 GHz frequency, which makes the metasurface 1-bit-coded. By programming the 1-bit-coded metasurface, the generation of a single-focus beam, a double-focus beam and a focused vortex beam was experimentally demonstrated. Furthermore, the single-focus beam with tunable focal lengths of 54 mm, 103 mm and 152 mm was experimentally observed at 5.7 GHz. The proposed programmable metasurface manifests robust and flexible beam-shaping ability which allows its application to microwave imaging, information transmission and sensing applications.

8.
Sensors (Basel) ; 23(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37960433

RESUMO

With the wide application of flow sensors, their reliability under extreme conditions has become a concern in recent years. The reliability of a Micro Electro Mechanical Systems (MEMS) flow sensor under temperature (Ts) is researched in this paper. This flow sensor consists of two parts, a sensor chip and a signal-processing system (SPS). Firstly, the step-stress accelerated degradation test (SSADT) is implemented. The sensor chip and the flow sensor system are tested. The results show that the biggest drift is 3.15% for sensor chips under 150 °C testing conditions, while 32.91% is recorded for the flowmeters. So, the attenuation of the SPS is significant to the degeneration of this flowmeter. The minimum drift of the SPS accounts for 82.01% of this flowmeter. Secondly, using the Coffin-Manson model, the relationship between the cycle index and Ts is established. The lifetime with a different Ts is estimated using the Arrhenius model. In addition, Weibull distribution (WD) is applied to evaluate the lifetime distribution. Finally, the reliability function of the WD is demonstrated, and the survival rate within one year is 87.69% under 85 °C conditions. With the application of accelerated degradation testing (ADT), the acquired results are innovative and original. This research illustrates the reliability research, which provides a relational database for the application of this flow sensor.

9.
Opt Express ; 31(6): 10805-10819, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-37157619

RESUMO

In this paper, an all-dielectric metasurface consisting of a unit cell containing a nanocube array and organized periodically on a silicon dioxide substrate is designed and analyzed. By introducing asymmetric parameters that can excite the quasi-bound states in the continuum, three Fano resonances with high Q-factor and high modulation depth may be produced in the near-infrared range. Three Fano resonance peaks are excited by magnetic dipole and toroidal dipole, respectively, in conjunction with the distributive features of electromagnetism. The simulation results indicate that the discussed structure can be utilized as a refractive index sensor with a sensitivity of around 434 nm/RIU, a maximum Q factor of 3327, and a modulation depth equal to 100%. The proposed structure has been designed and experimentally investigated, and its maximum sensitivity is 227 nm/RIU. At the same time, the modulation depth of the resonance peak at λ = 1185.81 nm is nearly 100% when the polarization angle of the incident light is 0 °. Therefore, the suggested metasurface has applications in optical switches, nonlinear optics, and biological sensors.

10.
ACS Sens ; 4(10): 2746-2753, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31524375

RESUMO

Infrared gas sensors have been proven promising for broad applications in Internet of Things and Industrial Internet of Things. However, the lack of miniaturized light sources with good compatibility and tunable spectral features hinders their widespread utilization. Herein, a strategy is proposed to increase the radiated power from microelectromechanical-based thermal emitters by coating with graphene oxide (GO). The radiation can be substantially enhanced, which partially stems from the high emissivity of GO coating demonstrated by spectroscopic methods. Moreover, the sp2 structure within GO may induce plasmons and thus couple with photons to produce blackbody radiation and/or new thermal emission sources. As a proof-of-concept demonstration, the GO-coated emitter is integrated into a multifunctional monitoring platform and evaluated for gas detection. The platform exhibits sensitive and highly selective detection toward CO2 at room temperature with a detection limit of 50 ppm and short response/recovery time, outperforming the state-of-the-art gas sensors. This study demonstrates the emission tailorability of thermal emitters and the feasibility of improving the associated gas sensing property, offering perspectives for designing and fabricating high-end optical sensors with cost-effectiveness and superior performance.


Assuntos
Dióxido de Carbono/análise , Grafite/química , Acetona/análise , Monóxido de Carbono/análise , Umidade , Raios Infravermelhos , Metano/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
11.
Angew Chem Int Ed Engl ; 58(40): 14089-14094, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31270915

RESUMO

Gas sensing technologies for smart cities require miniaturization, cost-effectiveness, low power consumption, and outstanding sensitivity and selectivity. On-chip, tailorable capacitive sensors integrated with metal-organic framework (MOF) films are presented, in which abundant coordinatively unsaturated metal sites are available for gas detection. The in situ growth of homogeneous Mg-MOF-74 films is realized with an appropriate metal-to-ligand ratio. The resultant sensors exhibit selective detection for benzene vapor and carbon dioxide (CO2 ) at room temperature. Postsynthetic modification of Mg-MOF-74 films with ethylenediamine decreases sensitivity toward benzene but increases selectivity to CO2 . The reduced porosity and blocked open metal sites caused by amine coordination account for a deterioration in the sensing performance for benzene (by ca. 60 %). The enhanced sensitivity for CO2 (by ca. 25 %) stems from a tailored amine-CO2 interaction. This study demonstrates the feasibility of tuning gas sensing properties by adjusting MOF-analyte interactions, thereby offering new perspectives for the development of MOF-based sensors.

12.
Appl Opt ; 58(17): 4708-4713, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31251291

RESUMO

Taking advantage of the near-infrared (IR) absorption characteristics of gases, a sensor with an ultrasmall sample volume composed of a sealed slot waveguide and based on evanescent field absorption is proposed in this paper. Compared with a traditional open-slot waveguide, it features small volume antiparticles depositing pollution over the long-term and is insensitive to surroundings. Working at 1645 nm, a large evanescent field ratio of 0.27 is obtained by simulation and optimization; meanwhile, the propagation loss is around 1.6 dB/cm. The needed sample volume of the designed sensor under the structure parameters of w_air=40 nm, h_air=400 nm, and waveguide length=3 cm is approximately 480 µm3, which helps the sensor demonstrate excellent performance for gas analysis with an ultrasmall sample volume.

13.
Opt Express ; 27(5): 6037-6046, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30876197

RESUMO

We present a high-resolution and miniature multi-wavelength Fiber Bragg Grating (FBG) interrogator based on a thermally tunable microring resonator (MRR) array. A phase detection method using dithering signals is exploited to generate an antisymmetric error signal curve, which is utilized for the feedback locking of the MRR with the FBG sensor. Dynamic strain sensing of both single FBG and multiple FBGs are experimentally demonstrated, with a dynamic strain resolution of 30 nε/√Hz over 100 Hz to 1 kHz. The proposed interrogator shows the great improvements in both resolution and wavelength accuracy compared with the reported MRR-based interrogators and is promising for scalable multiplexed sensing applications.

14.
Adv Mater ; 31(11): e1807161, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30637791

RESUMO

Surmounting the inhomogeniety issue of gas sensors and realizing their reproducible ppb-level gas sensing are highly desirable for widespread deployments of sensors to build networks in applications of industrial safety and indoor/outdoor air quality monitoring. Herein, a strategy is proposed to substantially improve the surface homogeneity of sensing materials and gas sensing performance via chip-level pyrolysis of as-grown ZIF-L (ZIF stands for zeolitic imidazolate framework) films to porous and hierarchical zinc oxide (ZnO) nanosheets. A novel approach to generate adjustable oxygen vacancies is demonstrated, through which the electronic structure of sensing materials can be fine-tuned. Their presence is thoroughly verified by various techniques. The sensing results demonstrate that the resultant oxygen vacancy-abundant ZnO nanosheets exhibit significantly enhanced sensitivity and shortened response time toward ppb-level carbon monoxide (CO) and volatile organic compounds encompassing 1,3-butadiene, toluene, and tetrachloroethylene, which can be ascribed to several reasons including unpaired electrons, consequent bandgap narrowing, increased specific surface area, and hierarchical micro-mesoporous structures. This facile approach sheds light on the rational design of sensing materials via defect engineering, and can facilitate the mass production, commercialization, and large-scale deployments of sensors with controllable morphology and superior sensing performance targeted for ultratrace gas detection.

15.
Sci Rep ; 7: 41640, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28139714

RESUMO

Detection of volatile organic compounds (VOCs) at parts-per-billion (ppb) level is one of the most challenging tasks for miniature gas sensors because of the high requirement on sensitivity and the possible interference from moisture. Herein, for the first time, we present a novel platform based on a hybrid photonic cavity with metal-organic framework (MOF) coatings for VOCs detection. We have fabricated a compact gas sensor with detection limitation ranging from 29 to 99 ppb for various VOCs including styrene, toluene, benzene, propylene and methanol. Compared to the photonic cavity without coating, the MOF-coated solution exhibits a sensitivity enhancement factor up to 1000. The present results have demonstrated great potential of MOF-coated photonic resonators in miniaturized gas sensing applications.


Assuntos
Técnicas Biossensoriais , Umidade , Estruturas Metalorgânicas , Fótons , Compostos Orgânicos Voláteis/análise , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Modelos Teóricos
16.
J Neurosci ; 36(47): 11946-11958, 2016 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-27881780

RESUMO

Rett syndrome (RTT) is caused by mutations in the gene encoding methyl-CpG binding protein 2 (MECP2), an epigenetic regulator of mRNA transcription. Here, we report a test of the hypothesis of shared pathophysiology of RTT and fragile X, another monogenic cause of autism and intellectual disability. In fragile X, the loss of the mRNA translational repressor FMRP leads to exaggerated protein synthesis downstream of metabotropic glutamate receptor 5 (mGluR5). We found that mGluR5- and protein-synthesis-dependent synaptic plasticity were similarly altered in area CA1 of Mecp2 KO mice. CA1 pyramidal cell-type-specific, genome-wide profiling of ribosome-bound mRNAs was performed in wild-type and Mecp2 KO hippocampal CA1 neurons to reveal the MeCP2-regulated "translatome." We found significant overlap between ribosome-bound transcripts overexpressed in the Mecp2 KO and FMRP mRNA targets. These tended to encode long genes that were functionally related to either cytoskeleton organization or the development of neuronal connectivity. In the Fmr1 KO mouse, chronic treatment with mGluR5-negative allosteric modulators (NAMs) has been shown to ameliorate many mutant phenotypes by correcting excessive protein synthesis. In Mecp2 KO mice, we found that mGluR5 NAM treatment significantly reduced the level of overexpressed ribosome-associated transcripts, particularly those that were also FMRP targets. Some Rett phenotypes were also ameliorated by treatment, most notably hippocampal cell size and lifespan. Together, these results suggest a potential mechanistic link between MeCP2-mediated transcription regulation and mGluR5/FMRP-mediated protein translation regulation through coregulation of a subset of genes relevant to synaptic functions. SIGNIFICANCE STATEMENT: Altered regulation of synaptic protein synthesis has been hypothesized to contribute to the pathophysiology that underlies multiple forms of intellectual disability and autism spectrum disorder. Here, we show in a mouse model of Rett syndrome (Mecp2 KO) that metabotropic glutamate receptor 5 (mGluR5)- and protein-synthesis-dependent synaptic plasticity are abnormal in the hippocampus. We found that a subset of ribosome-bound mRNAs was aberrantly upregulated in hippocampal CA1 neurons of Mecp2 KO mice, that these significantly overlapped with FMRP direct targets and/or SFARI human autism genes, and that chronic treatment of Mecp2 KO mice with an mGluR5-negative allosteric modulator tunes down upregulated ribosome-bound mRNAs and partially improves mutant mice phenotypes.


Assuntos
Hipocampo/fisiopatologia , Imidazóis/administração & dosagem , Complexos Multienzimáticos/metabolismo , Piridinas/administração & dosagem , Receptor de Glutamato Metabotrópico 5/metabolismo , Síndrome de Rett/tratamento farmacológico , Síndrome de Rett/fisiopatologia , Regulação Alostérica/efeitos dos fármacos , Animais , Regulação para Baixo/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Síndrome de Rett/patologia
17.
Sci Rep ; 6: 29672, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27417734

RESUMO

The dew point is the temperature at which vapour begins to condense out of the gaseous phase. The deterministic relationship between the dew point and humidity is the basis for the industry-standard "chilled-mirror" dew point hygrometers used for highly accurate humidity measurements, which are essential for a broad range of industrial and metrological applications. However, these instruments have several limitations, such as high cost, large size and slow response. In this report, we demonstrate a compact, integrated photonic dew point sensor (DPS) that features high accuracy, a small footprint, and fast response. The fundamental component of this DPS is a partially exposed photonic micro-ring resonator, which serves two functions simultaneously: 1) sensing the condensed water droplets via evanescent fields and 2) functioning as a highly accurate, in situ temperature sensor based on the thermo-optic effect (TOE). This device virtually eliminates most of the temperature-related errors that affect conventional "chilled-mirror" hygrometers. Moreover, this DPS outperforms conventional "chilled-mirror" hygrometers with respect to size, cost and response time, paving the way for on-chip dew point detection and extension to applications for which the conventional technology is unsuitable because of size, cost, and other constraints.

18.
Chem Commun (Camb) ; 52(52): 8087-90, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27181340

RESUMO

We report the intergrowth of ZIF-8 crystals on ultrathin graphene oxide (GO) membranes, which helps to reduce the non-selective pores of pristine GO membranes leading to gas selectivities as high as 406, 155, and 335 for H2/CO2, H2/N2, and H2/CH4 mixtures, respectively.

19.
Opt Express ; 22(20): 24104-10, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25321985

RESUMO

Here, we demonstrate a chip-scale integrated optical wavelength tracker with fast response and compact format. By exploiting the electro-optic(EO) effect on a thermally controlled silicon micro-ring resonator filter, the proposed tracker can operate over a wide wavelength range according to the thermo-optic (TO) effect; meanwhile, the tracker's response speed is greatly improved through the EO effect (i.e. tracking within 1 ns), as compared to the traditional TO controlled methods (typical ~10 µs). With the integration of a photodiode onto the photonics chip, the compact chip is with a footprint of 0.5 mm × 1.5 mm. This tracker has potential applications for wavelength tacking in advanced DWDM network systems, tunable laser sources, and high performance optical sensors.

20.
Opt Express ; 22(20): 24235-40, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25321998

RESUMO

We report a novel lateral packaging approach using laser welding technique with angle polished fiber coupling to grating coupler embedded silicon photonic circuit. Measurements show the relax alignment tolerance for fiber packaging process. The packaging excess loss of 1.2 dB is achieved. The use of angle polished fiber for lateral fiber coupling enables an alternative way for cost-effective deployment of silicon photonics packaging in telecommunication systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA