Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharm ; 21(7): 3383-3394, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38831541

RESUMO

Carbonic anhydrase IX (CAIX), a zinc metal transmembrane protein, is highly expressed in 95% of clear cell renal cell carcinomas (ccRCCs). A positron emission tomography (PET) probe designed to target CAIX in nuclear medicine imaging technology can achieve precise positioning, is noninvasive, and can be used to monitor CAIX expression in lesions in real time. In this study, we constructed a novel acetazolamide dual-targeted small-molecule probe [68Ga]Ga-LF-4, which targets CAIX by binding to a specific amino acid sequence. After attenuation correction, the radiolabeling yield reached 66.95 ± 0.57% (n = 5) after 15 min of reaction and the radiochemical purity reached 99% (n = 5). [68Ga]Ga-LF-4 has good in vitro and in vivo stability, and in vivo safety and high affinity for CAIX, with a Kd value of 6.62 nM. Moreover, [68Ga]Ga-LF-4 could be quickly cleared from the blood in vivo. The biodistribution study revealed that the [68Ga]Ga-LF-4 signal was concentrated in the heart, lung, and kidney after administration, which was the same as that observed in the micro-PET/CT study. In a ccRCC patient-derived xenograft (PDX) model, the signal significantly accumulated in the tumor after administration, where it was retained for up to 4 h. After competitive blockade with LF-4, uptake at the tumor site was significantly reduced. The SUVmax of the probe [68Ga]Ga-LF-4 at the ccRCC tumor site was three times greater than that in the PC3 group with low CAIX expression at 30 min (ccRCC vs PC3:1.86 ± 0.03 vs 0.62 ± 0.01, t = 48.2, P < 0.0001). These results indicate that [68Ga]Ga-LF-4 is a novel small-molecule probe that targets CAIX and can be used to image localized and metastatic ccRCC lesions.


Assuntos
Anidrase Carbônica IX , Carcinoma de Células Renais , Radioisótopos de Gálio , Neoplasias Renais , Animais , Anidrase Carbônica IX/metabolismo , Anidrase Carbônica IX/antagonistas & inibidores , Humanos , Camundongos , Carcinoma de Células Renais/diagnóstico por imagem , Carcinoma de Células Renais/metabolismo , Neoplasias Renais/diagnóstico por imagem , Neoplasias Renais/metabolismo , Distribuição Tecidual , Linhagem Celular Tumoral , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/química , Camundongos Nus , Antígenos de Neoplasias/metabolismo , Sondas Moleculares/farmacocinética , Sondas Moleculares/química , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Acetazolamida/farmacocinética , Feminino , Camundongos Endogâmicos BALB C , Tomografia por Emissão de Pósitrons/métodos , Masculino , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Mol Pharm ; 21(2): 944-956, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38270082

RESUMO

T cell immunoglobulin and mucin domain-3 (TIM3; HAVCR2) is a transmembrane protein that exerts negative regulatory control over T cell responses. Studies have demonstrated an upregulation of TIM3 expression in tumor-infiltrating lymphocytes (TILs) in cancer patients. In this investigation, a series of monoclonal antibodies targeting TIM3 were produced by hybridoma technology. Among them, C23 exhibited favorable biological properties. To enable specific binding, we developed a 124I/125I-C23 radio-tracer via N-bromosuccinimide (NBS)-mediated labeling of the monoclonal antibody C23. Binding affinity and specificity were assessed using the 293T-TIM3 cell line, which overexpresses TIM3, and the parent 293T cells. Furthermore, biodistribution and in vivo imaging of 124I/125I-C23 were examined in HEK293TIM3 xenograft models and allograft models of 4T1 (mouse breast cancer cells) and CT26 (mouse colon cancer cells). Micro-PET/CT imaging was conducted at intervals of 4, 24, 48, 72, and/or 96 h post intravenous administration of 3.7-7.4 MBq 124I-C23 in the respective model mice. Additionally, immunohistochemistry (IHC) staining of TIM3 expression in dissected tumor organs was performed, along with an assessment of the corresponding expression of Programmed Death 1 (PD1), CD3, and CD8 in the tumors. The C23 monoclonal antibody (mAb) specifically binds to TIM3 protein with a dissociation constant of 23.28 nM. The 124I-C23 and 125I-C23 radio-tracer were successfully prepared with a labeling yield of 83.59 ± 0.35% and 92.35 ± 0.20%, respectively, and over 95.00% radiochemical purity. Stability results indicated that the radiochemical purity of 124I/125I-C23 in phosphate-buffered saline (PBS) and 5% human serum albumin (HSA) was still >80% after 96 h. 125I-C23 uptake in 293T-TIM3 cells was 2.80 ± 0.12%, which was significantly higher than that in 293T cells (1.08 ± 0.08%), and 125I-C23 uptake by 293T-TIM3 cells was significantly blocked at 60 and 120 min in the blocking groups. Pharmacokinetics analysis in vivo revealed an elimination time of 14.62 h and a distribution time of 0.4672 h for 125I-C23. Micro-PET/CT imaging showed that the 124I-C23 probe uptake in the 293T-TIM3 model significantly differed from that of the negative control group and blocking group. In the humanized mouse model, the 124I-C23 probe had obvious specific uptake in the 4T1 and CT26 models and maximum uptake at 24 h in tumor tissues (SUVmax (the maximum standardized uptake value) in 4T1 and CT26 humanized TIM3 murine tumor models: 0.59 ± 0.01 and 0.76 ± 0.02, respectively). Immunohistochemistry of tumor tissues from these mouse models showed comparable TIM3 expression. CD3 and CD8 cells and PD-1 expression were also observed in TIM3-expressing tumor tissues. The TIM3-targeting antibody C23 showed good affinity and specificity. The 124I/125I-C23 probe has obvious targeting specificity for TIM3 in vitro and in vivo. Our results suggest that 124I/125I-C23 is a promising tracer for TIM3 imaging and may have great potential in monitoring immune checkpoint drug efficacy.


Assuntos
Anticorpos Monoclonais , Neoplasias , Animais , Humanos , Camundongos , Anticorpos Monoclonais/química , Linhagem Celular Tumoral , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Radioisótopos do Iodo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Compostos Radiofarmacêuticos/farmacocinética , Distribuição Tecidual
3.
Eur J Nucl Med Mol Imaging ; 51(5): 1221-1232, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38062170

RESUMO

PURPOSE: Gastric cancer (GC), one of the most prevalent and deadliest tumors worldwide, is often diagnosed at an advanced stage with limited treatment options and poor prognosis. The development of a CLDN18.2-targeted radioimmunotherapy probe is a potential treatment option for GC. METHODS: The CLDN18.2 antibody TST001 (provided by Transcenta) was conjugated with DOTA and radiolabeled with the radioactive nuclide 177Lu. The specificity and targeting ability were evaluated by cell uptake, imaging and biodistribution experiments. In BGC823CLDN18.2/AGSCLDN18.2 mouse models, the efficacy of [177Lu]Lu-TST001 against CLDN18.2-expressing tumors was demonstrated, and toxicity was evaluated by H&E staining and blood sample testing. RESULTS: [177Lu]Lu-TST001 was labeled with an 99.17%±0.32 radiochemical purity, an 18.50 ± 1.27 MBq/nmol specific activity and a stability of ≥ 94% after 7 days. It exhibited specific and high tumor uptake in CLDN18.2-positive xenografts of GC mouse models. Survival studies in BGC823CLDN18.2 and AGSCLDN18.2 tumor-bearing mouse models indicated that a low dose of 5.55 MBq and a high dose of 11.10 MBq [177Lu]Lu-TST001 significantly inhibited tumor growth compared to the saline control group, with the 11.1 MBq group showing better therapeutic efficacy. Histological staining with hematoxylin and eosin (H&E) and Ki67 immunohistochemistry of residual tissues confirmed tumor tissue destruction and reduced tumor cell proliferation following treatment. H&E showed that there was no significant short-term toxicity observed in the heart, spleen, stomach or other important organs when treated with a high dose of [177Lu]Lu-TST001, and no apparent hematotoxicity or liver toxicity was observed. CONCLUSION: In preclinical studies, [177Lu]Lu-TST001 demonstrated significant antitumor efficacy with acceptable toxicity. It exhibits strong potential for clinical translation, providing a new promising treatment option for CLDN18.2-overexpressing tumors, including GC.


Assuntos
Antineoplásicos , Neoplasias Gástricas , Humanos , Animais , Camundongos , Radioimunoterapia/métodos , Xenoenxertos , Neoplasias Gástricas/radioterapia , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto , Anticorpos Monoclonais/uso terapêutico , Linhagem Celular Tumoral , Lutécio/uso terapêutico , Claudinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA