Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cleft Palate Craniofac J ; : 10556656241237605, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483822

RESUMO

OBJECTIVE: The purpose of this study is to objectively quantify the degree of overcorrection in our current practice and to evaluate longitudinal morphological changes using CranioRateTM, a novel machine learning skull morphology assessment tool.  . DESIGN: Retrospective cohort study across multiple time points. SETTING: Tertiary care children's hospital. PATIENTS: Patients with preoperative and postoperative CT scans who underwent fronto-orbital advancement (FOA) for metopic craniosynostosis. MAIN OUTCOME MEASURES: We evaluated preoperative, postoperative, and two-year follow-up skull morphology using CranioRateTM to generate a Metopic Severity Score (MSS), a measure of degree of metopic dysmorphology, and Cranial Morphology Deviation (CMD) score, a measure of deviation from normal skull morphology. RESULTS: Fifty-five patients were included, average age at surgery was 1.3 years. Sixteen patients underwent follow-up CT imaging at an average of 3.1 years. Preoperative MSS was 6.3 ± 2.5 (CMD 199.0 ± 39.1), immediate postoperative MSS was -2.0 ± 1.9 (CMD 208.0 ± 27.1), and longitudinal MSS was 1.3 ± 1.1 (CMD 179.8 ± 28.1). MSS approached normal at two-year follow-up (defined as MSS = 0). There was a significant relationship between preoperative MSS and follow-up MSS (R2 = 0.70). CONCLUSIONS: MSS quantifies overcorrection and normalization of head shape, as patients with negative values were less "metopic" than normal postoperatively and approached 0 at 2-year follow-up. CMD worsened postoperatively due to postoperative bony changes associated with surgical displacements following FOA. All patients had similar postoperative metopic dysmorphology, with no significant association with preoperative severity. More severe patients had worse longitudinal dysmorphology, reinforcing that regression to the metopic shape is a postoperative risk which increases with preoperative severity.

2.
Plast Reconstr Surg ; 153(1): 112e-119e, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36943708

RESUMO

BACKGROUND: The diagnosis and management of metopic craniosynostosis involve subjective decision-making at the point of care. The purpose of this work was to describe a quantitative severity metric and point-of-care user interface to aid clinicians in the management of metopic craniosynostosis and to provide a platform for future research through deep phenotyping. METHODS: Two machine-learning algorithms were developed that quantify the severity of craniosynostosis-a supervised model specific to metopic craniosynostosis [Metopic Severity Score (MSS)] and an unsupervised model used for cranial morphology in general [Cranial Morphology Deviation (CMD)]. Computed tomographic (CT) images from multiple institutions were compiled to establish the spectrum of severity, and a point-of-care tool was developed and validated. RESULTS: Over the study period (2019 to 2021), 254 patients with metopic craniosynostosis and 92 control patients who underwent CT scanning between the ages of 6 and 18 months were included. CT scans were processed using an unsupervised machine-learning based dysmorphology quantification tool, CranioRate. The average MSS was 0.0 ± 1.0 for normal controls and 4.9 ± 2.3 ( P < 0.001) for those with metopic synostosis. The average CMD was 85.2 ± 19.2 for normal controls and 189.9 ± 43.4 ( P < 0.001) for those with metopic synostosis. A point-of-care user interface (craniorate.org) has processed 46 CT images from 10 institutions. CONCLUSIONS: The resulting quantification of severity using MSS and CMD has shown an improved capacity, relative to conventional measures, to automatically classify normal controls versus patients with metopic synostosis. The authors have mathematically described, in an objective and quantifiable manner, the distribution of phenotypes in metopic craniosynostosis.


Assuntos
Craniossinostoses , Humanos , Lactente , Craniossinostoses/diagnóstico por imagem , Craniossinostoses/genética , Crânio , Processamento de Imagem Assistida por Computador , Tomografia Computadorizada por Raios X/métodos
3.
Med Image Anal ; 91: 103034, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37984127

RESUMO

Statistical shape modeling (SSM) characterizes anatomical variations in a population of shapes generated from medical images. Statistical analysis of shapes requires consistent shape representation across samples in shape cohort. Establishing this representation entails a processing pipeline that includes anatomy segmentation, image re-sampling, shape-based registration, and non-linear, iterative optimization. These shape representations are then used to extract low-dimensional shape descriptors that are anatomically relevant to facilitate subsequent statistical analyses in different applications. However, the current process of obtaining these shape descriptors from imaging data relies on human and computational resources, requiring domain expertise for segmenting anatomies of interest. Moreover, this same taxing pipeline needs to be repeated to infer shape descriptors for new image data using a pre-trained/existing shape model. Here, we propose DeepSSM, a deep learning-based framework for learning the functional mapping from images to low-dimensional shape descriptors and their associated shape representations, thereby inferring statistical representation of anatomy directly from 3D images. Once trained using an existing shape model, DeepSSM circumvents the heavy and manual pre-processing and segmentation required by classical models and significantly improves the computational time, making it a viable solution for fully end-to-end shape modeling applications. In addition, we introduce a model-based data-augmentation strategy to address data scarcity, a typical scenario in shape modeling applications. Finally, this paper presents and analyzes two different architectural variants of DeepSSM with different loss functions using three medical datasets and their downstream clinical application. Experiments showcase that DeepSSM performs comparably or better to the state-of-the-art SSM both quantitatively and on application-driven downstream tasks. Therefore, DeepSSM aims to provide a comprehensive blueprint for deep learning-based image-to-shape models.


Assuntos
Aprendizado Profundo , Humanos , Imageamento Tridimensional/métodos , Modelos Estatísticos , Processamento de Imagem Assistida por Computador/métodos
4.
Plast Reconstr Surg ; 151(2): 396-403, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36696326

RESUMO

BACKGROUND: Quantifying the severity of head shape deformity and establishing a threshold for operative intervention remains challenging in patients with metopic craniosynostosis (MCS). This study combines three-dimensional skull shape analysis with an unsupervised machine-learning algorithm to generate a quantitative shape severity score (cranial morphology deviation) and provide an operative threshold score. METHODS: Head computed tomography scans from subjects with MCS and normal controls (5 to 15 months of age) were used for objective three-dimensional shape analysis using ShapeWorks software and in a survey for craniofacial surgeons to rate head-shape deformity and report whether they would offer surgical correction based on head shape alone. An unsupervised machine-learning algorithm was developed to quantify the degree of shape abnormality of MCS skulls compared to controls. RESULTS: One hundred twenty-four computed tomography scans were used to develop the model; 50 (24% MCS, 76% controls) were rated by 36 craniofacial surgeons, with an average of 20.8 ratings per skull. The interrater reliability was high (intraclass correlation coefficient, 0.988). The algorithm performed accurately and correlates closely with the surgeons assigned severity ratings (Spearman correlation coefficient, r = 0.817). The median cranial morphology deviation for affected skulls was 155.0 (interquartile range, 136.4 to 194.6; maximum, 231.3). Skulls with ratings of 150.2 or higher were very likely to be offered surgery by the experts in this study. CONCLUSIONS: This study describes a novel metric to quantify the head shape deformity associated with MCS and contextualizes the results using clinical assessments of head shapes by craniofacial experts. This metric may be useful in supporting clinical decision making around operative intervention and in describing outcomes and comparing patient population across centers.


Assuntos
Craniossinostoses , Aprendizado de Máquina não Supervisionado , Humanos , Lactente , Reprodutibilidade dos Testes , Craniossinostoses/diagnóstico por imagem , Craniossinostoses/cirurgia , Crânio/diagnóstico por imagem , Crânio/cirurgia
5.
J Craniofac Surg ; 34(1): 58-64, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35946829

RESUMO

BACKGROUND: There have been few longitudinal studies assessing the effect of preoperative phenotypic severity on long-term esthetic outcomes in metopic craniosynostosis. This study evaluates the relationship between metopic severity and long-term esthetic outcomes using interfrontal angle (IFA) and CranioRate, a novel metopic synostosis severity measure. METHODS: Patients with metopic craniosynostosis who underwent bifrontal orbital advancement and remodeling between 2012 and 2017 were reviewed. Preoperative computed tomography head scans were analyzed for IFA and CranioRate, a machine learning algorithm which generates quantitative severity ratings including metopic severity score (MSS) and cranial morphology deviation (CMD). Long-term esthetic outcomes were assessed by craniofacial surgeons using blinded 3-rater esthetic grading of clinical photos. Raters assessed Whitaker score and the presence of temporal hollowing, lateral orbital retrusion, frontal bone irregularities and/or "any visible irregularities." RESULTS: Preoperative scans were performed at a mean age of 7.7±3.4 months, with average MSS of 6/10, CMD of 200/300, and IFA of 116.8±13.8 degrees. Patients underwent bifrontal orbital advancement and remodeling at mean 9.9±3.1 months. The average time from operation to esthetic assessment was 5.4±1.0 years. Pearson correlation revealed a significant negative correlation between MSS and age at computed tomography ( r =-0.451, P =0.004) and IFA ( r =-0.371, P =0.034) and between IFA and age at surgery ( r =-0.383, P =0.018). In multinomial logistic regression, preoperative MSS was the only independent predictor of visible irregularities (odds ratio=2.18, B =0.780, P =0.024) and preoperative IFA alone significantly predicted Whitaker score, with more acute IFA predicting worse Whitaker score (odds ratio=0.928, B =-0.074, P =0.928). CONCLUSIONS: More severe preoperative phenotypes of metopic craniosynostosis were associated with worse esthetic dysmorphology. Objective measures of preoperative metopic severity predicted long-term esthetic outcomes.


Assuntos
Craniossinostoses , Estética Dentária , Humanos , Craniossinostoses/diagnóstico por imagem , Craniossinostoses/cirurgia , Osso Frontal , Aprendizado de Máquina , Fenótipo , Estudos Retrospectivos
6.
Cleft Palate Craniofac J ; 60(3): 274-279, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-34787505

RESUMO

OBJECTIVE: Several severity metrics have been developed for metopic craniosynostosis, including a recent machine learning-derived algorithm. This study assessed the diagnostic concordance between machine learning and previously published severity indices. DESIGN: Preoperative computed tomography (CT) scans of patients who underwent surgical correction of metopic craniosynostosis were quantitatively analyzed for severity. Each scan was manually measured to derive manual severity scores and also received a scaled metopic severity score (MSS) assigned by the machine learning algorithm. Regression analysis was used to correlate manually captured measurements to MSS. ROC analysis was performed for each severity metric and were compared to how accurately they distinguished cases of metopic synostosis from controls. RESULTS: In total, 194 CT scans were analyzed, 167 with metopic synostosis and 27 controls. The mean scaled MSS for the patients with metopic was 6.18 ± 2.53 compared to 0.60 ± 1.25 for controls. Multivariable regression analyses yielded an R-square of 0.66, with significant manual measurements of endocranial bifrontal angle (EBA) (P = 0.023), posterior angle of the anterior cranial fossa (p < 0.001), temporal depression angle (P = 0.042), age (P < 0.001), biparietal distance (P < 0.001), interdacryon distance (P = 0.033), and orbital width (P < 0.001). ROC analysis demonstrated a high diagnostic value of the MSS (AUC = 0.96, P < 0.001), which was comparable to other validated indices including the adjusted EBA (AUC = 0.98), EBA (AUC = 0.97), and biparietal/bitemporal ratio (AUC = 0.95). CONCLUSIONS: The machine learning algorithm offers an objective assessment of morphologic severity that provides a reliable composite impression of severity. The generated score is comparable to other severity indices in ability to distinguish cases of metopic synostosis from controls.


Assuntos
Inteligência Artificial , Craniossinostoses , Humanos , Lactente , Craniossinostoses/diagnóstico por imagem , Craniossinostoses/cirurgia , Tomografia Computadorizada por Raios X , Estudos Retrospectivos
7.
Cleft Palate Craniofac J ; 60(8): 971-979, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-35306870

RESUMO

This study aims to determine the utility of 3D photography for evaluating the severity of metopic craniosynostosis (MCS) using a validated, supervised machine learning (ML) algorithm.This single-center retrospective cohort study included patients who were evaluated at our tertiary care center for MCS from 2016 to 2020 and underwent both head CT and 3D photography within a 2-month period.The analysis method builds on our previously established ML algorithm for evaluating MCS severity using skull shape from CT scans. In this study, we regress the model to analyze 3D photographs and correlate the severity scores from both imaging modalities.14 patients met inclusion criteria, 64.3% male (n = 9). The mean age in years at 3D photography and CT imaging was 0.97 and 0.94, respectively. Ten patient images were obtained preoperatively, and 4 patients did not require surgery. The severity prediction of the ML algorithm correlates closely when comparing the 3D photographs to CT bone data (Spearman correlation coefficient [SCC] r = 0.75; Pearson correlation coefficient [PCC] r = 0.82).The results of this study show that 3D photography is a valid alternative to CT for evaluation of head shape in MCS. Its use will provide an objective, quantifiable means of assessing outcomes in a rigorous manner while decreasing radiation exposure in this patient population.


Assuntos
Craniossinostoses , Imageamento Tridimensional , Humanos , Masculino , Lactente , Feminino , Estudos Retrospectivos , Imageamento Tridimensional/métodos , Craniossinostoses/diagnóstico por imagem , Craniossinostoses/cirurgia , Fotografação
8.
J Craniofac Surg ; 33(8): 2372-2378, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35864584

RESUMO

PURPOSE: A subset of patients with metopic craniosynostosis are noted to have elevated intracranial pressure (ICP). However, it is not known if the propensity for elevated ICP is influenced by the severity of metopic cranial dysmorphology. METHODS: Children with nonsyndromic single-suture metopic synostosis were prospectively enrolled and underwent optical coherence tomography to measure optic nerve head morphology. Preoperative head computed tomography scans were assessed for endocranial bifrontal angle as well as scaled metopic synostosis severity score (MSS) and cranial morphology deviation score determined by CranioRate, an automated severity classifier. RESULTS: Forty-seven subjects were enrolled between 2014 and 2019, at an average age of 8.5 months at preoperative computed tomography and 11.8 months at index procedure. Fourteen patients (29.7%) had elevated optical coherence tomography parameters suggestive of elevated ICP at the time of surgery. Ten patients (21.3%) had been diagnosed with developmental delay, eight of whom demonstrated elevated ICP. There were no significant associations between measures of metopic severity and ICP. Metopic synostosis severity score and endocranial bifrontal angle were inversely correlated, as expected ( r =-0.545, P <0.001). A negative correlation was noted between MSS and formally diagnosed developmental delay ( r =-0.387, P =0.008). Likewise, negative correlations between age at procedure and both MSS and cranial morphology deviation was observed ( r =-0.573, P <0.001 and r =-0.312, P =0.025, respectively). CONCLUSIONS: Increased metopic severity was not associated with elevated ICP at the time of surgery. Patients who underwent later surgical correction showed milder phenotypic dysmorphology with an increased incidence of developmental delay.


Assuntos
Craniossinostoses , Hipertensão Intracraniana , Criança , Humanos , Lactente , Pressão Intracraniana , Craniossinostoses/diagnóstico por imagem , Craniossinostoses/cirurgia , Crânio , Tomografia Computadorizada por Raios X , Hipertensão Intracraniana/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA