Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Adv Mater ; : e2404900, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38857942

RESUMO

Single atom catalyst (SAC) is one of the most efficient and versatile catalysts with well-defined active sites. However, its facile and large-scale preparation, the prerequisite of industrial applications, has been very challenging. This dilemma originates from the Gibbs-Thomson effect, which renders it rather difficult to achieve high single atom loading (< 3 mol%). Further, most synthesizing procedures are quite complex, resulting in significant mass loss and thus low yields. Herein, a novel metal coordination route is developed to address these issues simultaneously, which is realized owing to the rapid complexation between ligands (e.g., biuret) and metal ions in aqueous solutions and subsequent in situ polymerization of the formed complexes to yield SACs. The whole preparation process involves only one heating step operated in air without any special protecting atmospheres, showing general applicability for diverse transition metals. Take Cu SAC for an example, a record yield of up to 3.565 kg in one pot and an ultrahigh metal loading 16.03 mol% on carbon nitride (Cu/CN) are approached. The as-prepared SACs are demonstrated to possess high activity, outstanding selectivity, and robust cyclicity for CO2 photoreduction to HCOOH. This research explores a robust route toward cost-effective, massive production of SACs for potential industrial applications.

2.
Chem Commun (Camb) ; 60(39): 5136-5148, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38656314

RESUMO

Hydrogen production via the photocatalytic water splitting reaction on semiconductors presents a promising avenue to directly achieve solar energy conversion and storage. Bismuth-based semiconductors with layered structures, a hierarchical arrangement of components stacked in the form of two-dimensional extended layers where the atoms within each layer are typically strongly bonded, while the interactions between the layers are relatively weak, have emerged as an important series of photocatalyst candidates. In this review, we focus on the new emerging layered bismuth-based semiconductors with structures in Sillén, Aurivillius, Sillén-Aurivillius and bismuth chromate systems primarily employed in the photocatalytic water splitting reaction. From a crystal structure-oriented view, we delve into discussions on how the component and unit of a crystal structure influence the intrinsic properties, including light absorption and photogenerated charge transfer and separation, of materials as well as the corresponding photocatalytic performance of the water splitting reaction. The strategies for modulating the ferroelectricity and surface modification of these layered bismuth-based semiconductors are also involved. We also discuss the limitations of these materials accompanied by a forward-looking perspective, and we hope to provide some insights from the view of rational material design and engineering for the fabrication of high-efficiency photocatalytic water splitting systems.

4.
Nat Commun ; 15(1): 397, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195692

RESUMO

So-called Z-scheme systems permit overall water splitting using narrow-bandgap photocatalysts. To boost the performance of such systems, it is necessary to enhance the intrinsic activities of the hydrogen evolution photocatalyst and oxygen evolution photocatalyst, promote electron transfer from the oxygen evolution photocatalyst to the hydrogen evolution photocatalyst, and suppress back reactions. The present work develop a high-performance oxysulfide photocatalyst, Sm2Ti2O5S2, as an hydrogen evolution photocatalyst for use in a Z-scheme overall water splitting system in combination with BiVO4 as the oxygen evolution photocatalyst and reduced graphene oxide as the solid-state electron mediator. After surface modifications of the photocatalysts to promote charge separation and redox reactions, this system is able to split water into hydrogen and oxygen for more than 100 hours with a solar-to-hydrogen energy conversion efficiency of 0.22%. In contrast to many existing photocatalytic systems, the water splitting activity of the present system is only minimally reduced by increasing the background pressure to 90 kPa. These results suggest characteristics suitable for applications under practical operating conditions.

5.
Nat Commun ; 14(1): 8030, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38049410

RESUMO

A long-standing trade-off exists between improving crystallinity and minimizing particle size in the synthesis of perovskite-type transition-metal oxynitride photocatalysts via the thermal nitridation of commonly used metal oxide and carbonate precursors. Here, we overcome this limitation to fabricate ATaO2N (A = Sr, Ca, Ba) single nanocrystals with particle sizes of several tens of nanometers, excellent crystallinity and tunable long-wavelength response via thermal nitridation of mixtures of tantalum disulfide, metal hydroxides (A(OH)2), and molten-salt fluxes (e.g., SrCl2) as precursors. The SrTaO2N nanocrystals modified with a tailored Ir-Pt alloy@Cr2O3 cocatalyst evolved H2 around two orders of magnitude more efficiently than the previously reported SrTaO2N photocatalysts, with a record solar-to-hydrogen energy conversion efficiency of 0.15% for SrTaO2N in Z-scheme water splitting. Our findings enable the synthesis of perovskite-type transition-metal oxynitride nanocrystals by thermal nitridation and pave the way for manufacturing advanced long-wavelength-responsive particulate photocatalysts for efficient solar energy conversion.

6.
Angew Chem Int Ed Engl ; 62(42): e202310607, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37653542

RESUMO

Photocatalytic water splitting is an ideal means of producing hydrogen in a sustainable manner, and developing highly efficient photocatalysts is a vital aspect of realizing this process. The photocatalyst Y2 Ti2 O5 S2 (YTOS) is capable of absorbing at wavelengths up to 650 nm and exhibits outstanding thermal and chemical durability compared with other oxysulfides. However, the photocatalytic performance of YTOS synthesized using the conventional solid-state reaction (SSR) process is limited owing to the large particle sizes and structural defects associated with this synthetic method. Herein, we report the synthesis of YTOS particles by a flux-assisted technique. The enhanced mass transfer efficiency in the flux significantly reduced the preparation time compared with the SSR method. In addition, the resulting YTOS showed improved photocatalytic H2 and O2 evolution activity when loaded with Rh and Co3 O4 co-catalysts, respectively. These improvements are attributed to the reduced particle size and enhanced crystallinity of the material as well as the slower decay of photogenerated carriers on a nanosecond to sub-microsecond time range. Further optimization of this flux-assisted method together with suitable surface modification is expected to produce high-quality YTOS crystals with superior photocatalytic activity.

7.
Adv Mater ; 35(15): e2211182, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36779436

RESUMO

Photocatalytic water splitting for solar energy conversion remains challenged by the lack of novel semiconductor photocatalysts with paramount parameters including wide light-harvesting ranges and suitable band structures. Here, a novel triclinic-phase bismuth chromate (Bi2 CrO6 ) acting as a semiconductor photocatalyst candidate is reported. Triclinic Bi2 CrO6 exhibits a broad absorption range of ≈650 nm with a direct bandgap of 1.86 eV and shows a suitable band structure for water splitting. Theoretical simulations of triclinic Bi2 CrO6 reveal a high charge mobility, possibly owing to the strong hybridized covalent bonds, large elastic modulus, and small carrier effective mass. The triclinic Bi2 CrO6 is demonstrated to work well toward photocatalytic water oxidation and hydrogen production reactions under visible light and match well with its absorption ranges. In particular, it exhibits decent photocatalytic water oxidation performance in the presence of various electron scavengers. Furthermore, the visible-light-driven Z-scheme overall water splitting system is fabricated by coupling triclinic Bi2 CrO6 as the oxygen evolution photocatalyst with SrTiO3 :Rh as the hydrogen evolution photocatalyst, giving a stable overall water splitting with stoichiometric evolution of H2 and O2 . This work presents a promising semiconductor material enabling wide-range light harvesting for photocatalytic and photo-electrochemical solar energy conversion.

8.
Chem Soc Rev ; 51(24): 10120-10122, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36448635

RESUMO

Correction for 'Recent advances and perspectives for solar-driven water splitting using particulate photocatalysts' by Xiaoping Tao et al., Chem. Soc. Rev., 2022, 51, 3561-3608, https://doi.org/10.1039/d1cs01182k.

9.
Materials (Basel) ; 15(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35806686

RESUMO

Three-dimensional printing, also called additive manufacturing (AM), offers a new vision for optical components in terms of weight reduction and strength improvement. A truss, which is a triangulated system of members that are structured and connected in such a way that they mainly bear axial force, is commonly used in steel structures to improve stiffness and reduce weight. Combining these two technologies, an extremely lightweight truss-structured mirror was proposed. First, the finite element analyses (FEA) on surface shape deviation and modal properties were carried out. Results showed that the mirrors had sufficient stiffness and a high weight reduction of up to 85%. In order to verify their performance, the truss-structured mirror blanks were fabricated with AM technology. After that, both the preprocessing and the postprocessing of the mirrors were carried out. The results show that without NiP coating, a surface shape deviation of 0.353λ (PV) and 0.028 λ (RMS) (λ = 632.8 nm) with a roughness of Ra 2.8 nm, could be achieved. Therefore, the truss-structured mirrors in this study have the characteristics of being extremely lightweight and having improved stiffness as well as strong temperature stability.

10.
Angew Chem Int Ed Engl ; 61(28): e202204108, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35522460

RESUMO

Metal-organic frameworks (MOFs) have been intensively studied as a class of semiconductor-like materials in photocatalysis. However, band bending, which plays a crucial role in semiconductor photocatalysis, has not yet been demonstrated in MOF photocatalysts. Herein, a representative MOF, MIL-125-NH2 , is integrated with the metal oxides (MoO3 and V2 O5 ) that feature appropriate work functions and energy levels to afford the corresponding MOF composites. Surface photovoltage results demonstrate band bending in the MOF composites, which gives rise to the built-in electric field of MIL-125-NH2 , boosting the charge separation. As a result, the MOF composites present 56 and 42 times higher activities, respectively, compared to the pristine MOF for photocatalytic H2 production. Upon depositing Pt onto the MOF, ∼6 times higher activity is achieved. This work illustrates band bending of MOFs for the first time, supporting their semiconductor-like nature, which would greatly promote MOF photocatalysis.

11.
Chem Soc Rev ; 51(9): 3561-3608, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35403632

RESUMO

The conversion and storage of solar energy to chemical energy via artificial photosynthesis holds significant potential for optimizing the energy situation and mitigating the global warming effect. Photocatalytic water splitting utilizing particulate semiconductors offers great potential for the production of renewable hydrogen, while this cross-road among biology, chemistry, and physics features a topic with fascinating interdisciplinary challenges. Progress in photocatalytic water splitting has been achieved in recent years, ranging from fundamental scientific research to pioneering scalable practical applications. In this review, we focus mainly on the recent advancements in terms of the development of new light-absorption materials, insights and strategies for photogenerated charge separation, and studies towards surface catalytic reactions and mechanisms. In particular, we emphasize several efficient charge separation strategies such as surface-phase junction, spatial charge separation between facets, and polarity-induced charge separation, and also discuss their unique properties including ferroelectric and photo-Dember effects on spatial charge separation. By integrating time- and space-resolved characterization techniques, critical issues in photocatalytic water splitting including photoinduced charge generation, separation and transfer, and catalytic reactions are analyzed and reviewed. In addition, photocatalysts with state-of-art efficiencies in the laboratory stage and pioneering scalable solar water splitting systems for hydrogen production using particulate photocatalysts are presented. Finally, some perspectives and outlooks on the future development of photocatalytic water splitting using particulate photocatalysts are proposed.


Assuntos
Energia Solar , Água , Catálise , Hidrogênio/química , Luz , Água/química
12.
Small ; 18(5): e2103245, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34766433

RESUMO

Crystal facet engineering has been recognized as a powerful strategy to finely modulate the charge separation behavior in semiconductor photocatalysis; however, disclosing the intrinsic roles that the morphologies and crystal facets play on photogenerated charge separation of semiconductor nanocrystals remains elusive. Herein, exemplified on the typical visible-light-responsive photocatalyst bismuth vanadate (BiVO4 ), for the first time, the successful fabrication is reported of well-defined BiVO4 square nanocrystals with precisely controllable (040)/(200) facet proportion, which undergo a dissolution-recrystallization-facet growth process accompanied with tetragonal to monoclinic phase transition. Spatial separation of photogenerated electrons and holes has been evidently demonstrated to take place between (040) and (200) facets of BiVO4 nanocrystals, on which the charge separation efficiency is verified to definitely depend on the facet proportion of (040)/(200). Further theoretical simulation reveals that the matching degree of charge collection length and crystal configuration is considered to be the major factor determining charge separation efficiency of BiVO4 nanocrystals. This study presents a strategy to fabricate morphology-tailored semiconductors, which will be favorable to advance the understanding of spatial charge separation in semiconductor photocatalysis.

13.
Chem Commun (Camb) ; 57(88): 11637-11640, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34668908

RESUMO

We experimentally demonstrated that spatial charge separation can take place between the {010} and {001} facets of Bi2WO6 microplates. Further assembly of the reduction and oxidation cocatalysts leads to a remarkable enhancement of photocatalytic water oxidation activity in the presence of Fe3+ ions while the reverse oxidation of Fe2+ to Fe3+ ions is totally inhibited. The origin of the driving force is theoretically proven to be the difference in surface work function between the co-exposed facets, which shows a feasible strategy for developing efficient photocatalysts for solar energy conversion.

14.
Toxins (Basel) ; 13(9)2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34564646

RESUMO

Ciguatera poisoning is mainly caused by the consumption of reef fish that have accumulated ciguatoxins (CTXs) produced by the benthic dinoflagellates Gambierdiscus and Fukuyoa. China has a long history of problems with ciguatera, but research on ciguatera causative organisms is very limited, especially in the Beibu Gulf, where coral reefs have been degraded significantly and CTXs in reef fish have exceeded food safety guidelines. Here, five strains of Gambierdiscus spp. were collected from Weizhou Island, a ciguatera hotspot in the Beibu Gulf, and identified by light and scanning electron microscopy and phylogenetic analyses based on large and small subunit rDNA sequences. Strains showed typical morphological characteristics of Gambierdiscus caribaeus, exhibiting a smooth thecal surface, rectangular-shaped 2', almost symmetric 4″, and a large and broad posterior intercalary plate. They clustered in the phylogenetic tree with G. caribaeus from other locations. Therefore, these five strains belonged to G. caribaeus, a globally distributed Gambierdiscus species. Toxicity was determined through the mouse neuroblastoma assay and ranged from 0 to 5.40 fg CTX3C eq cell-1. The low level of toxicity of G. caribaeus in Weizhou Island, with CTX-contaminated fish above the regulatory level in the previous study, suggests that the long-term presence of low toxicity G. caribaeus might lead to the bioaccumulation of CTXs in fish, which can reach dangerous CTX levels. Alternatively, other highly-toxic, non-sampled strains could be present in these waters. This is the first report on toxic Gambierdiscus from the Beibu Gulf and Chinese waters and will provide a basis for further research determining effective strategies for ciguatera management in the area.


Assuntos
Ciguatoxinas/análise , Dinoflagellida/química , China , Ciguatera , Recifes de Corais , Dinoflagellida/isolamento & purificação , Especificidade da Espécie
15.
Adv Mater ; 32(31): e2002137, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32596931

RESUMO

Lead-free inorganic halide perovskites have triggered appealing interests in various energy-related applications including solar cells and photocatalysis. However, why perovskite-structured materials exhibit excellent photoelectric properties and how the unique crystalline structures affect the charge behaviors are still not well elucidated but essentially desired. Herein, taking inorganic halide perovskite Cs3 Bi2 Br9 as a prototype, the significant derivation process of silver atoms incorporation to induce the structural transformation from Cs3 Bi2 Br9 to Cs2 AgBiBr6 , which brings about dramatic differences in photoelectric properties is unraveled. It is demonstrated that the silver incorporation results in the co-operated orbitals hybridization, which makes the electronic distributions in conduction and valence bands of Cs2 AgBiBr6 more dispersible, eliminating the strong localization of electron-hole pairs. As consequences of the electronic structures derivation, exhilarating changes in photoelectric properties like band structure, exciton binding energy, and charge carrier dynamics are verified experimentally and theoretically. Using photocatalytic hydrogen evolution activity under visible light as a typical evaluation, such crystalline structure transformation contributes to a more than 100-fold enhancement in photocatalytic performances compared with pristine Cs3 Bi2 Br9 , verifying the significant effect of structural derivations on the exhibited performances. The findings will provide evidences for understanding the origin of photoelectric properties for perovskites semiconductors in solar energy conversion.

17.
Angew Chem Int Ed Engl ; 59(24): 9653-9658, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32181560

RESUMO

Scalable solar hydrogen production by water splitting using particulate photocatalysts is promising for renewable energy utilization. However, photocatalytic overall water splitting is challenging owing to slow water oxidation kinetics, severe reverse reaction, and H2 /O2 gas separation. Herein, mimicking nature photosynthesis, a practically feasible approach named Hydrogen Farm Project (HFP) is presented, which is composed of solar energy capturing and hydrogen production subsystems integrated by a shuttle ion loop, Fe3+ /Fe2+ . Well-defined BiVO4 crystals with precisely tuned {110}/{010} facets are ideal photocatalysts to realize the HFP, giving up to 71 % quantum efficiency for photocatalytic water oxidation and full forward reaction with nearly no reverse reaction. An overall solar-to-chemical efficiency over 1.9 % and a solar-to-hydrogen efficiency exceeding 1.8 % could be achieved. Furthermore, a scalable HFP panel for solar energy storage was demonstrated under sunlight outdoors.

18.
Angew Chem Int Ed Engl ; 59(16): 6590-6595, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-31994300

RESUMO

Surface atomic arrangement and coordination of photocatalysts highly exposed to different crystal facets significantly affect the photoreactivity. However, controversies on the true photoreactivity of a specific facet in heterogeneous photocatalysis still exits. Herein, we exemplified well-defined BiOBr nanosheets dominating with respective facets, (001) and (010), to track the reactivity of crystal facets for photocatalytic water splitting. The real photoreactivity of BiOBr-(001) were evidenced to be significantly higher than BiOBr-(010) for both hydrogen production and oxygen evolution reactions. Further in situ photochemical probing studies verified the distinct reactivity is not only owing to the highly exposed facets, but dominated by the co-exposing facets, leading to an efficient spatial separation of photogenerated charges and further making the oxidation and reduction reactions separately occur with different reaction rates, which ordains the fate of the true photoreactivity.

19.
Natl Sci Rev ; 7(1): 102-112, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34692021

RESUMO

The microRNA miR396 directly represses GROWTH-REGULATING FACTORs (OsGRFs) and has been implicated in regulating rice yield and in nitrogen assimilation. Overexpressing the miR396 targets OsGRF4 and OsGRF6 improves rice yield via increased grain size and panicle branching, respectively. Here, we used CRISPR/Cas9 to assess the function of miR396 genes in rice. Knockout of MIR396ef (MIR396e and MIR396f), but not other isoforms, enhanced both grain size and panicle branching, resulting in increased grain yield. Importantly, under nitrogen-deficient conditions, mir396ef mutants showed an even higher relative increase in grain yield as well as elevated above-ground biomass. Furthermore, we identified OsGRF8 as a new target of miR396, in addition to the known targets OsGRF4 and OsGRF6. Disruption of the miR396-targeting site in OsGRF8 was sufficient to both enlarge grain size and elongate panicles. Our results suggest that rice-seed and panicle development are regulated by miR396ef-GRF4/6/8-GIF1/2/3 modules and that miR396ef are promising targets of genome editing for breeding environmentally friendly rice varieties that require less nitrogen fertilization.

20.
Plant Biotechnol J ; 18(3): 770-778, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31469505

RESUMO

Adenine base editors (ABEs) have been exploited to introduce targeted adenine (A) to guanine (G) base conversions in various plant genomes, including rice, wheat and Arabidopsis. However, the ABEs reported thus far are all quite inefficient at many target sites in rice, which hampers their applications in plant genome engineering and crop breeding. Here, we show that unlike in the mammalian system, a simplified base editor ABE-P1S (Adenine Base Editor-Plant version 1 Simplified) containing the ecTadA*7.10-nSpCas9 (D10A) fusion has much higher editing efficiency in rice compared to the widely used ABE-P1 consisting of the ecTadA-ecTadA*7.10-nSpCas9 (D10A) fusion. We found that the protein expression level of ABE-P1S is higher than that of ABE-P1 in rice calli and protoplasts, which may explain the higher editing efficiency of ABE-P1S in different rice varieties. Moreover, we demonstrate that the ecTadA*7.10-nCas9 fusion can be used to improve the editing efficiency of other ABEs containing SaCas9 or the engineered SaKKH-Cas9 variant. These more efficient ABEs will help advance trait improvements in rice and other crops.


Assuntos
Adenina/química , Edição de Genes , Genoma de Planta , Oryza/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA