Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
ACS Nano ; 18(5): 4467-4477, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38263634

RESUMO

The energy conversion efficiency of a triboelectric nanogenerator (TENG) is severely limited by the charge density of triboelectric materials, while drastic and unavoidable charge decay happens during contact due to the insufficient charge retention capacity of positive triboelectric materials. Here, elaborately synthesized acid-ion-doped pyridine-based polybenzimidazole processing with strong charge retention capability is demonstrated to couple with negatively corona-polarized electrets. As illustrated by thermal stimulation and an ion mass spectrometer, the formation of acid-ion chimerism processes high activation energy for stored charges, and the selective anion migration can compensate the escape of polarized charge. Accordingly, the charge density can reach up to 596 µC m-2 and the charge retention rate reaches 49.7%, which is so far the highest intrinsic charge density obtained in the open air. Thus, the ionic chimerism strategy provides an effective way to suppress the charge escaping in the open air and gives a great expandable avenue for the material challenges of TENG's practical deployment.

2.
Nat Commun ; 14(1): 3315, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286541

RESUMO

Eye tracking provides valuable insight for analyzing visual attention and underlying thinking progress through the observation of eye movements. Here, a transparent, flexible and ultra-persistent electrostatic sensing interface is proposed for realizing active eye tracking (AET) system based on the electrostatic induction effect. Through a triple-layer structure combined with a dielectric bilayer and a rough-surface Ag nanowire (Ag NW) electrode layer, the inherent capacitance and interfacial trapping density of the electrostatic interface has been strongly enhanced, contributing to an unprecedented charge storage capability. The electrostatic charge density of the interface reached 1671.10 µC·m-2 with a charge-keeping rate of 96.91% after 1000 non-contact operation cycles, which can finally realize oculogyric detection with an angular resolution of 5°. Thus, the AET system enables real-time decoding eye movements for customer preference recording and eye-controlled human-computer interaction, supporting its limitless potentiality in commercial purpose, virtual reality, human computer interactions and medical monitoring.


Assuntos
Movimentos Oculares , Tecnologia de Rastreamento Ocular , Humanos , Eletricidade Estática , Eletrodos
3.
Nanoscale ; 15(14): 6709-6721, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36938843

RESUMO

Efficient removal of air pollution caused by volatile organic compounds (VOCs) and particulate matter (PM) through distributed energy collected from the environment is an effective strategy to achieve both energy conservation and better air quality. Herein, a curtain purification system based on a rabbit fur-based rotary triboelectric nanogenerator (RR-TENG) and a collaborative photocatalysis technology was designed for indoor air purification. The high electrostatic field from RR-TENG enhances formaldehyde adsorption, while it can also efficiently adsorb PM2.5 simultaneously. More interestingly, the ultrahigh electric field provided by RR-TENG promotes the separation of photogenerated electron-hole pairs of the g-C3N4/TiO2 composite photocatalyst, generating more superoxide radicals (⋅O2-), hydroxyl radicals (⋅OH), and holes (h+) and thereby improving the photocatalytic efficiency. In a simulated reaction chamber of 9 L, the formaldehyde removal rate of the system can reach 79.2% within 90 min and RR-TENG rapidly reduces PM2.5 from 999 µg m-3 to 50 µg m-3 within 60 s. This study proposes a curtain purification system integrating the function of energy collection and photocatalytic purification, which can be applied for improving air quality and human health.

4.
Small Methods ; 7(6): e2201593, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36895071

RESUMO

Regulating the ranking of polymer in triboelectric series over a wide range is of great help for material's selection of triboelectric nanogenerators (TENGs). Herein, fluorinated poly(phthalazinone ether)s (FPPEs) with tunable molecular structure and aggregate structure are synthesized by co-polycondensation, while the large positive ranking shift in the triboelectric series can be achieved by introducing phthalazinone moieties with strong electron donating capability. FPPE-5, which includes abundant phthalazinone moieties, is more positive than all of the previously reported triboelectric polymers. Hence, the regulating range of FPPEs in this work updates a new record in triboelectric series, which is wider than that of previous works. A peculiar crystallization behavior, capable of trapping and storing more electrons, has been observed in FPPE-2 with 25% phthalazinone moieties. Correspondingly, FPPE-2 is more negative than FPPE-1 without a phthalazinone moiety, which is an unexpected shift against the common changing tendency in triboelectric series. With FPPEs films as the probing material, a tactile TENG sensor is applied to enable material identification via electrical signal polarity. Hence, this study demonstrates a strategy to regulate the series of triboelectric polymers by copolymerization using monomers with distinct electrification capabilities, where both the monomer ratio and the peculiar nonlinear behavior can control triboelectric performance.

5.
Artigo em Inglês | MEDLINE | ID: mdl-36301113

RESUMO

With the rapid development of triboelectric nanogenerators (TENGs) for flexible wearable devices and electronic skins, challenges have gradually emerged related to the electrification surface, such as pollutant contamination and sophisticated surface adaptability. Hence, we report a simple spraying method to produce a shape-adaptive photocatalytic (SAP) triboelectric material with both self-cleaning and shape-adaptive functions. By spraying the polyvinyl alcohol solution with TiO2 photocatalysts and pre-drying cyclic, the SAP film can be adapted to a varied and intricate substrate. The highest transferred charge density of the SAP film reaches 197.5 µC/m2, when it contacts with the PTFE film. At the same time, it can degrade 74.4% of simulated pollutants under sunlight illumination, and 97% of the transferred charge density can be maintained after the degradation process, indicating good self-cleaning function and stable electrical output. Moreover, the spraying method of this allows it to have shape-adaptive functions. Accordingly, the SAP film can be deposited on the rectangular pyramid and hemispherical surface for fabricating TENGs with special shapes. This low-cost and simple spraying method further promotes the commercialized application of TENGs in the field of wearable devices and skin sensors.

6.
Nat Commun ; 13(1): 4083, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35835779

RESUMO

Triboelectric polymer with high charge density is the foundation to promote the wide range of applications of triboelectric nanogenerators. This work develops a method to produce triboelectric polymer based on repeated rheological forging. The fluorinated ethylene propylene film fabricated by repeated forging method not only has excellent mechanical properties and good transmittance, but also can maintain an ultrahigh tribo-charge density. Based on the film with a thickness of 30 µm, the output charge density from contact-separation nanogenerator reaches 352 µC·m-2. Then, the same film is applied for the nanogenerator with air-breakdown mode and a charge density of 510 µC·m-2 is further achieved. The repeated forging method can effectively regulate the composition of surface functional groups, the crystallinity, and the dielectric constants of the fluorinated ethylene propylene, leading to the superior capability of triboelectrification. Finally, we summarize the key parameters for elevating the electrification performance on the basis of molecular structure and related fabrication crafts, which can guide the further development of triboelectric polymers.

7.
Small ; 18(10): e2107232, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35122467

RESUMO

Conventional approaches to studying fish kinematics pose a great challenge for the real-time monitoring of fish motion kinematics. Here, a multifunctional fish-wearable data snooping platform (FDSP) for studying fish kinematics is demonstrated based on an air sac triboelectric nanogenerator (AS-TENG) with antibacterial coating. The AS-TENG not only can harvest energy from fish swimming but also serves as the self-powered sensory module to monitor the swimming behavior of the fish. The peak output power generated from each swing of the fishtail can reach 0.74 mW, while its output voltage can reflect the real-time behavior of the fishtail. The antibacterial coating on the FDSP can improve its biocompatibility and the elastic texture of the FDSP allows it to be tightly attached to fish. The wireless communication system is designed to transmit the sensory data to a cell phone, where the detailed parameters of fish motion can be obtained, including swing angle, swing frequency, and even the typical swing gestures. This FDSP has broad application prospects in underwater self-powered sensors, wearable tracking devices, and soft robots.


Assuntos
Nanotecnologia , Dispositivos Eletrônicos Vestíveis , Fenômenos Biomecânicos , Monitorização Fisiológica , Movimento (Física)
8.
ACS Nano ; 16(3): 4654-4665, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35171554

RESUMO

Shoes play an important role in sports and human daily life. Here, an in-shoe sensor pad (ISSP) attached to the vamp lining is based on a triboelectric nanogenerator (TENG) for monitoring the real-time stress distribution on the top side of a foot. Each sensor unit on this ISSP is an air-capsule TENG (AC-TENG) consisting of activated carbon/polyurethane (AC/PU) and microsphere array electrodes. The detection range of each AC-TENG reaches 7.27 MPa, which is enough for monitoring the pressure change during different sports. This multifunctional ISSP can realize many typical functions of conventional smart shoes, including step counting and human-machine interaction. Moreover, it can also reveal special information, including the fitness of shoes, the stress concentration on toes, and the in-motion comfort degree. The signal processing and data transmission modules in the system have a hybrid power supply with wireless power transfer, while the real-time information about feet can be observed on a cell phone. Hence, this ISSP provides a potential approach to study the feet motion and comfort degree of shoes in long-term operations, which can guide both athlete training and the customized design of shoes.


Assuntos
Nanotecnologia , Sapatos , Fontes de Energia Elétrica , Eletrodos , Humanos , Movimento (Física)
9.
ACS Nano ; 15(11): 18206-18213, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34677929

RESUMO

It is known that the suspended liquid droplets in clouds can generate electrostatic charges, which finally results in the lightning. However, the detailed mechanism related to the contact-electrification process on the liquid-gas (L-G) interfaces is still poorly understood. Here, by introducing an acoustic levitation method for levitating a liquid droplet, we have studied the electrification mechanism at the L-G interface. The tribo-motion between water droplets and air induced by the ultrasound wave leads to the generation of positive charges on the surface of the droplets, and the charge amount of water droplets (20 µL) gradually reaches saturation within 30 s. The mixed solid particles in droplets can increase the amount of transferred charge, whereas the increase of ion concentration in the droplet can suppress the charge generation. This charge transfer phenomenon at L-G interfaces and the related analysis can be a guidance for the study in many fields, including anti-static, harvesting rainy energy, micro/nano fluidics, triboelectric power generator, surface engineering, and so on. Moreover, the surface charge generation due to L-G electrification is an inevitable effect during ultrasonic levitation, and thus, this study can also work for the applications of the ultrasonic technique.

10.
ACS Nano ; 15(6): 10609-10617, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34101417

RESUMO

Liquid-solid triboelectric nanogenerator (L-S TENG) is one of the major techniques to collect energy from tiny liquids, while the saturated charge density at the L-S interface is the key element to decide its performance. Here, we found that the saturated charge density of L-S contact electrification (CE) can be further increased under the illumination of an ultraviolet (UV) light. The fluorine-containing polymers and SiO2 are chosen as the electrification materials and with and without UV illumination on the L-S TENG. A series of experiments have been done to rule out the possible influences of anion generation, chemical change of solid surface, ionization of water, and so on. Therefore, we proposed that electrons belonging to water molecules can be excited to high energy states under UV illumination, which then transfer to solid surface and captured by the solid surface. Finally, a photoexcited electron transfer model is proposed to explain the enhancement of CE under the UV illumination. This work not only helps to further understand CE at L-S interface, but also offers an approach to further enhance the performance of L-S TENG, which can promote the TENG applications in the field of microfluidic systems, liquid energy harvesting, and droplet sensory.

11.
iScience ; 24(5): 102502, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34113833

RESUMO

Harvesting mechanical energy via a triboelectric nanogenerator (TENG) is a promising strategy for solving energy problems. However, it is necessary to develop an effective and safe energy managing circuit for preventing high voltage breaking electronic devices. Here, a universal managing circuit is developed to optimize TENG's output performance, which for the first time allows the TENG to safely power various sensor systems with a safe and stable voltage. Based on the circuit, TENG's output can be transformed into a stable voltage with tunable amplitude, while an enhanced short-circuit current of 94 mA with an energy loss lower than 5% is achieved. For demonstrations, three different types of TENGs, respectively, targeting at ocean energy, wind energy, and walking energy have been prepared to reveal the capability of the circuit. This study offers a strategy to greatly enhance the output performance of TENGs to provide useful guidance for constructing self-powered and distributed sensor systems.

12.
Research (Wash D C) ; 2021: 8564780, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33748764

RESUMO

Highly sensitive ethanol sensors have been widely utilized in environmental protection, industrial monitoring, and drink-driving tests. In this work, a fully self-powered ethanol detector operating at room temperature has been developed based on a triboelectric nanogenerator (TENG). The gas-sensitive oxide semiconductor is selected as the sensory component for the ethanol detection, while the resistance change of the oxide semiconductor can well match the "linear" region of the load characteristic curve of TENG. Hence, the output signal of TENG can directly reveal the concentration change of ethanol gas. An accelerator gearbox is applied to support the operation of the TENG, and the concentration change of ethanol gas can be visualized on the Liquid Crystal Display. This fully self-powered ethanol detector has excellent durability, low fabrication cost, and high selectivity of 5 ppm. Therefore, the ethanol detector based on TENG not only provides a different approach for the gas detection but also further demonstrates the application potential of TENG for various sensory devices.

13.
Adv Mater ; 32(25): e2001307, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32410246

RESUMO

Polymers are commonly used to fabricate triboelectric nanogenerators (TENGs). Here, several polymer films with similar main chains but different functional groups on the side chain are employed to clarify the contributions of each functional group to contact electrification (CE). The results show that the electron-withdrawing (EW) ability and density of these functional groups on the main chain can determine both the polarity and density of CE-induced surface charges. Similar results are obtained for CE in both the polymer-polymer and polymer-liquid modes. A theoretical mechanism involving electron cloud overlap is proposed to explain all of these results. More importantly, the unsaturated groups on poly(tetrafluoroethylene) molecular chain are proved to have a much stronger EW ability than the saturated groups. The density of these unsaturated groups can be increased using a sputtering technique, suggesting that this is a facile and effective method of enhancing the performance of TENGs. These results clarify the correlation between the molecular structure and macroscopic electrification behavior of polymers.

14.
Mol Biol Rep ; 40(3): 2609-15, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23238921

RESUMO

The full-length cDNA sequence of the MLO gene was cloned via SMART-RACE-PCR from muskmelon (Cucumis melo L.), and was designated as CmMLO2 (GenBank Accession No. FJ713542). The gene is 1,710 bp long and encodes a 570-amino acid peptide with a seven-transmembrane domain topology, and is a typical transmembrane protein. Localization analysis in onion epidermal cells showed that CmMLO2-GFP is localized in the plasma membrane. The expression of CmMLO2 gene was analyzed in melon leaf infected with powdery mildew using a quantitative RT-PCR and it was found that CmMLO2 was mainly expressed in melon leaves in a no-tissue-specific pattern. Moreover, CmMLO2 may play a crucial role in the pathogenesis of powdery mildew.


Assuntos
Cucumis melo/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Membrana/genética , Sequência de Aminoácidos , Clonagem Molecular , Cucumis melo/metabolismo , Espaço Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Filogenia , Transporte Proteico , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA