RESUMO
Polyethylene film mulching is a key technology for soil water retention in dryland agriculture, but the aging of the films can generate a large number of microplastics with different shapes. There exists a widespread misunderstanding that the concentrations of microplastics might be the determinant affecting the diversity and assembly of soil bacterial communities, rather than their shapes. Here, we examined the variations of soil bacteria community composition and functioning under two-year field incubation by four shapes (ball, fiber, fragment and powder) of microplastics along the concentration gradients (0.01%, 0.1% and 1%). Data showed that specific surface area of microplastics was significantly positively correlated with the variations of bacterial community abundance and diversity (r=0.505, p<0.05). The fragment- and fiber-shape microplastics displayed more pronounced interfacial continuity with soil particles and induced greater soil bacterial α-diversity, relative to the powder- and ball-shape ones. Strikingly, microplastic concentrations were not significantly correlated with bacterial community indices (r=0.079, p>0.05). Based on the variations of the ßNTI, bacterial community assembly actually followed both stochastic and deterministic processes, and microplastic shapes significantly modified soil biogeochemical cycle and ecological functions. Therefore, the shapes of microplastics, rather than the concentration, significantly affected soil bacterial community assembly, in association with microplastic-soil-water interfaces.
RESUMO
It is crucial to elucidate the release rate of microplastics (MPs) and phthalic acid esters (PAEs) in agricultural soil and their effects on crop productivity regarding film types and thicknesses. To address this issue, two-year landfill test was performed using 0.016 mm-thick polyethylene (PEt1) & biodegradable (BIOt1), and 0.01 mm-thin polyethylene (PEt2) & biodegradable (BIOt2) residual films as materials with no landfill as CK. Scanning electron microscopy (SEM) and infrared analyses revealed that two-year landfill caused considerable changes in physical forms and spectral peaks in BIO film, which was more pronounced in thin BIO (36.90 % weight loss). Yet, less changes were presented in the above analyzes in polyethylene (PE) films, and thick films damaged relatively less. MPs number was 86,829.11 n/kg in BIOt1 and 134,912.27 n/kg in BIOt2, equivalent to 2.55 and 3.72 times higher than in PEt1 and PEt2, respectively. This was closely associated with PAEs release, as soil PAEs concentration was substantially lower in PEt1 (17.60 g/kg) and PEt2 (21.43 g/kg) than in BIOt1 and BIOt2 (37.12 g/kg and 49.20 g/kg), respectively. Furthermore, maize productivity parameters were negatively correlated with the amount of MPs and PAEs. BIOt2 and PEt1 had the lowest and highest grain yield, respectively. BIO exhibited greater environmental risk and adverse effects on soil and crop productivity than PE film due to physical degradation and release of PAEs. Thickness-wise comparison exhibited that thin film residues had more adverse effect relative to thick film ones.