RESUMO
This research focuses on assessing the synergistic effects of Mexican oregano (Lippia graveolens) essential oil or carvacrol when combined with the antibiotic imipenem, aiming to reduce the pathogenic viability and virulence of Acinetobacter baumannii and Pseudomonas aeruginosa. The study highlighted the synergistic effect of combining L. graveolens essential oil or carvacrol with imipenem, significantly reducing the required doses for inhibiting bacterial growth. The combination treatments drastically lowered the necessary imipenem doses, highlighting a potent enhancement in efficacy against A. baumannii and P. aeruginosa. For example, the minimum inhibitory concentrations (MIC) for the essential oil/imipenem combinations were notably low, at 0.03/0.000023 mg/mL for A. baumannii and 0.0073/0.000023 mg/mL for P. aeruginosa. Similarly, the combinations significantly inhibited biofilm formation at lower concentrations than when the components were used individually, demonstrating the strategic advantage of this approach in combating antibiotic resistance. For OXA-51, imipenem showed a relatively stable interaction during 30 ns of dynamic simulation of their interaction, indicating changes (<2 nm) in ligand positioning during this period. Carvacrol exhibited similar fluctuations to imipenem, suggesting its potential inhibition efficacy, while thymol showed significant variability, particularly at >10 ns, suggesting potential instability. With IMP-1, imipenem also displayed very stable interactions during 38 ns and demonstrated notable movement and positioning changes within the active site, indicating a more dynamic interaction. In contrast, carvacrol and thymol maintained their position within the active site only ~20 and ~15 ns, respectively. These results highlight the effectiveness of combining L. graveolens essential oil and carvacrol with imipenem in tackling the difficult-to-treat pathogens A. baumannii and P. aeruginosa.
RESUMO
The increasing demand for natural, safe, and sustainable food preservation methods drove research towards the use of plant antimicrobials as an alternative to synthetic preservatives. This review article comprehensively discussed the potential applications of plant extracts, essential oils, and their compounds as antimicrobial agents in the food industry. The antimicrobial properties of several plant-derived substances against foodborne pathogens and spoilage microorganisms, along with their modes of action, factors affecting their efficacy, and potential negative sensory impacts, were presented. The review highlighted the synergistic or additive effects displayed by combinations of plant antimicrobials, as well as the successful integration of plant extracts with food technologies ensuring an improved hurdle effect, which can enhance food safety and shelf life. The review likewise emphasized the need for further research in fields such as mode of action, optimized formulations, sensory properties, safety assessment, regulatory aspects, eco-friendly production methods, and consumer education. By addressing these gaps, plant antimicrobials can pave the way for more effective, safe, and sustainable food preservation strategies in the future.
RESUMO
Antibiotic resistance is a serious global threat, and the misuse of antibiotics is considered its main cause. It is characterized by the expression of bacterial defense mechanisms, e.g., ß-lactamases, expulsion pumps, and biofilm development. Acinetobacter baumannii and Pseudomonas aeruginosa are antibiotic-resistant species that cause high morbidity and mortality. Several alternatives are proposed to defeat antibiotic resistance, including antimicrobial peptides, bacteriophages, and plant compounds. Terpenes from different plant essential oils have proven antimicrobial action against pathogenic bacteria, and evidence is being generated about their effect against antibiotic-resistant species. That is the case for oregano essential oil (Lippia graveolens), whose antibacterial effect is widely attributed to carvacrol, its main component; however, minor constituents could have an important contribution. The analyzed evidence reveals that most antibacterial evaluations have been performed on single species; however, it is necessary to analyze their activity against multispecies systems. Hence, another alternative is using plant compounds to inactivate hydrolytic enzymes and biofilms to potentiate antibiotics' effects. Despite the promising results of plant terpenes, more extensive and deep mechanistic studies are needed involving antibiotic-resistant multispecies to understand their full potential against this problem.
RESUMO
Introduction: Bacterial agents and oxidative reactions are involved in health and food preservation issues, and Yucca baccata (Y. baccata) can be a source of compounds with practical applications in both areas, but its investigation remains limited. Materials and Methods: Butanolic (YBE) and aqueous (YAE) extracts were obtained from the stem of Y. baccata. The total saponin, phenolic, and flavonoid contents were analyzed in the YBE and YAE. The antioxidant capacity of the extracts was determined by the DPPH, TEAC, FRAP, and ORAC assays. Seven Gram-positive and five Gram-negative pathogenic bacteria strains were used to determine the MIC and MBC. Results: Saponin contents were 30% and 1.81% (w/w) in the YBE and YAE, respectively. The total phenolic and flavonoid contents in the extracts were 29.5 µg GAEmg-1 (2.95%) and 5.58 µg GAEmg-1 (0.56%) in the YBE and 69.92 µg QEmg-1 (7.0%) and 1.65 µg QEmg-1 (0.165%) in the YAE. The antioxidant capacity values of YBE were 29.18 µg TEmg-1, 121.8 µg TEmg-1, 33.41 µg TEmg-1, and 156.84 µg TEmg-1 by the DPPH, TEAC, FRAP, and ORAC assays, respectively. YAE had lower antioxidant values than YBE (P < 0.05). Values of 80 mgmL-1 and 100 mgmL-1 were estimated for MIC and MBC of YBE against the Gram-positive bacteria. Values of 100 mgmL-1 and 120 mgmL-1 for MIC and MBC of YBE were estimated against the Gram-negative bacteria. No MIC and MBC were obtained for YAE. Conclusion: YBE exhibited higher antioxidant activity than YAE. Apparently, antibacterial properties of the YBE tended to be higher than those of the YAE.
Assuntos
Saponinas , Yucca , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , México , Bactérias , Antibacterianos/farmacologia , Flavonoides/farmacologia , Fenóis/farmacologia , Fenóis/análise , Testes de Sensibilidade MicrobianaRESUMO
Aqueous and ethanolic pomegranate peel extracts (PPE) were studied as a source of phenolic compounds with antimicrobial, anti-quorum sensing, and antioxidant properties. The aqueous extract showed higher total phenolic and flavonoid content (153.43 mg GAE/g and 45.74, respectively) and antioxidant capacity (DPPH radical inhibition: 86.12%, ABTS radical scavenging capacity: 958.21 mg TE/dw) compared to the ethanolic extract. The main phenolic compounds identified by UPLC-DAD were chlorogenic and gallic acids. The aqueous PPE extract showed antimicrobial activity against Listeria monocytogenes, Salmonella Typhimurium, Candida tropicalis (MICs 19-30 mg/mL), and anti-quorum sensing activity expressed as inhibition of Chromobacterium violaceum violacein production (%). The aqueous PPE extracts at 25 mg/mL applied on alfalfa sprouts reduced psychrophilic bacteria (1.12 Log CFU/100 g) and total coliforms (1.23 Log CFU/100 g) and increased the antioxidant capacity of the treated sprouts (55.13 µmol TE/100 g (DPPH) and 126.56 µmol TE/100 g (ABTS)) compared to untreated alfalfa. This study emphasizes PPE's antioxidant and antimicrobial activities in alfalfa sprouts preservation.
RESUMO
The main goal of this study was to evaluate the inhibition of Pseudomonas aeruginosa virulence factors and Quorum Sensing during exposure to carvacrol. P. aeruginosa (ATCC 10154) was exposed to carvacrol determining changes in biofilm development, motility, acyl-homoserine lactones (AHL) synthesis and relative expression of lasI/lasR. Docking analysis was used to determinate interactions between carvacrol with LasI and LasR proteins. P. aeruginosa produced 60% lower AHLs when exposed to carvacrol (1.9 mM) compared to control, without affecting cellular viability, indicating a reduction on the LasI synthase activity. AHL-C12, C6, and C4 were detected and related to biofilm development, motility, and pyocyanin production, respectively. The presence of carvacrol reduced the expression of lasR, without affecting lasI gen. Moreover, computational docking showed interactions of carvacrol with amino acids in the active site pocket of LasI (-5.6 kcal mol-1) and within the binding pocket of LasR (-6.7 kcal mol-1) of P. aeruginosa. These results demonstrated that virulence of P. aeruginosa was reduced by carvacrol, by inhibiting LasI activity with the concomitant reduction on the expression of lasR, biofilm and swarming motility. This study provides relevant information about the effect of carvacrol against quorum sensing to inhibit virulence factors of P. aeruginosa at enzymatic and gene levels. These findings can contribute to the development of natural anti-QS products, which can affect pathogenesis.
RESUMO
The objective of this study was to evaluate the effect of combining catechin, protocatechuic, and vanillic acids against planktonic growing, adhesion, and biofilm eradication of uropathogenic Escherichia coli (UPEC), as well as antioxidant agents. The minimum inhibitory concentrations (MIC) of protocatechuic, vanillic acids and catechin against the growth of planktonic bacteria were 12.98, 11.80, and 13.78 mM, respectively. Mixing 1.62 mM protocatechuic acid + 0.74 mM vanillic acid + 0.05 mM catechin resulted in a synergistic effect acting as an MIC. Similarly, the minimum concentrations of phenolic compounds to prevent UPEC adhesion and biofilm formation (MBIC) were 11.03 and 7.13 mM of protocatechuic and vanillic acids, respectively, whereas no MBIC of catechin was found. However, combinations of 1.62 mM protocatechuic acid + 0.74 mM vanillic acid + 0.05 mM catechin showed a synergistic effect acting as MBIC. On the other hand, the minimum concentrations to eradicate biofilms (MBEC) were 25.95 and 23.78 mM, respectively. The combination of 3.20 mM protocatechuic acid, 2.97 mM vanillic acid, and 1.72 mM catechin eradicated pre-formed biofilms. The antioxidant capacity of the combination of phenolics was higher than the expected theoretical values, indicating synergism by the DPPHâ¢, ABTS, and FRAP assays. Effective concentrations of catechin, protocatechuic, and vanillic acids were reduced from 8 to 1378 times when combined. In contrast, the antibiotic nitrofurantoin was not effective in eradicating biofilms from silicone surfaces. In conclusion, the mixture of phenolic compounds was more effective in preventing cell adhesion and eradicating pre-formed biofilms of uropathogenic E. coli than single compounds and nitrofurantoin, and showed antioxidant synergy.
Assuntos
Antibacterianos/farmacologia , Catequina/farmacologia , Hidroxibenzoatos/farmacologia , Ácido Vanílico/farmacologia , Antibacterianos/química , Antioxidantes/química , Antioxidantes/farmacologia , Biofilmes/efeitos dos fármacos , Catequina/química , Humanos , Hidroxibenzoatos/química , Testes de Sensibilidade Microbiana , Plâncton/efeitos dos fármacos , Escherichia coli Uropatogênica/efeitos dos fármacos , Escherichia coli Uropatogênica/patogenicidade , Ácido Vanílico/químicaRESUMO
BACKGROUND: Tomato is a fruit widely consumed due to its flavor and nutritional value; however, it is susceptible to fungi contamination. Oregano essential oil (OEO) is a fungicide whose constituents are volatile; therefore, their incorporation within edible coatings can protect them and maintain their efficacy. In this context, this study evaluated the effect of OEO applied within pectin coatings on the inhibition of Alternaria alternata growth, antioxidant content and sensorial acceptability of tomatoes. RESULTS: The major volatile compounds of OEO were carvacrol (47.41%), p-cymene (26.44%) and thymol (3.02%). All the applied OEO concentrations (15.7, 25.9 and 36.1 g L(-1) ) inhibited the in vitro growth of A. alternata, whereas the in vivo effective concentrations were 25.9 and 36.1 g L(-1) . Additionally, there was an increment of total phenols and antioxidant activity in coated tomatoes compared to controls. Aroma acceptability of tomatoes was not affected by the pectin-OEO coating; additionally, the pectin, pectin-OEO 15.7 g L(-1) treatments and control tomatoes showed higher flavor acceptability than those coated with pectin-OEO 25.9 and 36.1 g L(-1) . CONCLUSION: Pectin-OEO coatings showed antifungal effect and increased the antioxidant activity without negative effects on the sensorial acceptability of tomatoes. © 2015 Society of Chemical Industry.