Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38328141

RESUMO

Lysine-specific demethylase 1 (LSD1 or KDM1A ) has emerged as a critical mediator of tumor progression in metastatic castration-resistant prostate cancer (mCRPC). Among mCRPC subtypes, neuroendocrine prostate cancer (NEPC) is an exceptionally aggressive variant driven by lineage plasticity, an adaptive resistance mechanism to androgen receptor axis-targeted therapies. Our study shows that LSD1 expression is elevated in NEPC and associated with unfavorable clinical outcomes. Using genetic approaches, we validated the on-target effects of LSD1 inhibition across various models. We investigated the therapeutic potential of bomedemstat, an orally bioavailable, irreversible LSD1 inhibitor with low nanomolar potency. Our findings demonstrate potent antitumor activity against CRPC models, including tumor regressions in NEPC patient-derived xenografts. Mechanistically, our study uncovers that LSD1 inhibition suppresses the neuronal transcriptional program by downregulating ASCL1 through disrupting LSD1:INSM1 interactions and de-repressing YAP1 silencing. Our data support the clinical development of LSD1 inhibitors for treating CRPC - especially the aggressive NE phenotype. Statement of Significance: Neuroendocrine prostate cancer presents a clinical challenge due to the lack of effective treatments. Our research demonstrates that bomedemstat, a potent and selective LSD1 inhibitor, effectively combats neuroendocrine prostate cancer by downregulating the ASCL1- dependent NE transcriptional program and re-expressing YAP1.

2.
Acc Chem Res ; 34(9): 745-52, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11560474

RESUMO

This Account summarizes research work on the structural aspects and functional features encountered in all major branches of the Gif family of hydrocarbon-oxidizing reagents. Despite assertions by the inventor of Gif chemistry, D. H. R. Barton, to the effect that nonradical pathways could better explain the behavior of Gif systems, detailed experimental investigations provide compelling evidence to support the preponderance of oxygen- and carbon-centered radical chemistry.


Assuntos
Hidrocarbonetos/química , Oxidantes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA