Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biomech ; 175: 112294, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39186871

RESUMO

Whole-body vibration (WBV) may increase musculoskeletal disorder risk among workers standing on vibrating surfaces for prolonged periods. Limited studies were conducted to comprehend WBV impact on individuals engaged in dynamic activities. This study explored the effects of different horizontal WBV frequencies on gait parameters, lower limb kinematics, and the cognitive response of healthy subjects. Forty participants walked at constant speed on a treadmill mounted on a horizontal shaker providing harmonic vibration with an amplitude of 1 m/s2 and frequencies 2-10 Hz, with inversely proportional amplitudes. A Psychomotor Vigilance Test measured reaction time while a motion capture system recorded walking kinematics. ANOVA results revealed no significant impact of vibration frequencies on the reaction time. At 2 Hz, alterations in gait spatiotemporal parameters were significant, with reduced stride length, stride time, step length, and stance time and increased step width and cadence. Similarly, gait variability measured by standard deviation and coefficient of variation significantly increased at 2 Hz compared to the other conditions. Comparably, kinematic time series analyzed through statistical parametric mapping showed significant adjustments in different portions of the gait cycle at 2 Hz, including increased hip abduction and flexion, greater knee flexion around the heel strike, and augmented ankle dorsiflexion. Participants exhibited gait kinematic variations, mainly at 2 Hz, where the associated mediolateral displacement was higher, as a plausible strategy to maintain stability and postural control during perturbed locomotion. These findings highlight individuals' complex biomechanical adaptations in response to horizontal WBV, especially at lower frequencies, under dual-task conditions.

2.
Micromachines (Basel) ; 15(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38675301

RESUMO

Lower-limb rehabilitation exoskeletons offer a transformative approach to enhancing recovery in patients with movement disorders affecting the lower extremities. This comprehensive systematic review delves into the literature on sensor technologies and the control strategies integrated into these exoskeletons, evaluating their capacity to address user needs and scrutinizing their structural designs regarding sensor distribution as well as control algorithms. The review examines various sensing modalities, including electromyography (EMG), force, displacement, and other innovative sensor types, employed in these devices to facilitate accurate and responsive motion control. Furthermore, the review explores the strengths and limitations of a diverse array of lower-limb rehabilitation-exoskeleton designs, highlighting areas of improvement and potential avenues for further development. In addition, the review investigates the latest control algorithms and analysis methods that have been utilized in conjunction with these sensor systems to optimize exoskeleton performance and ensure safe and effective user interactions. By building a deeper understanding of the diverse sensor technologies and monitoring systems, this review aims to contribute to the ongoing advancement of lower-limb rehabilitation exoskeletons, ultimately improving the quality of life for patients with mobility impairments.

3.
Res Q Exerc Sport ; 95(3): 705-711, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38319327

RESUMO

Purpose: Alpine ski racing is a complex sport where no single factor can exclusively account for performance. We assessed body composition, using bioelectrical impedance vector analysis (BIVA), and our purpose was to study its influence on the strength and power profile of young alpine skiers. Methods: Anthropometric measurements and advanced BIVA parameters were recorded on eighteen alpine ski racers (6 females/12 males; 17.0 ± 1.3 years; 172.2 ± 9.3 cm; 68.5 ± 9.8 kg). Dynamic force and power were assessed using countermovement jumps (CMJ), while maximal isometric strength was evaluated for hip flexion-extension and abduction-adduction movements. Stepwise regression models examined the relationship between BIVA-derived parameters and strength/power variables. Results: Body cellular mass (BCM) positively related to jump height (p = .021, R2 = 74%), jump momentum (p < .001, R2 = 89%), reactive strength index modified (p = .026, R2 = 75%) and peak concentric power (p < .001, R2 = 82%), while intracellular water (ICW) related to peak eccentric (p < .001, R2 = 76%) and concentric force (p < .001, R2 = 77%) as well as to concentric rate of force development together with the phase angle (PhA) (p = .008, R2 = 79% and R2 = 0.015). Regarding isometric assessment, ICW was a significant predictor for all four movement directions, and PhA contributed to hip adduction strength. Conclusions: Body composition, particularly BCM and ICW, significantly predict force- and power-related factors in young alpine skiers.


Assuntos
Composição Corporal , Impedância Elétrica , Força Muscular , Esqui , Humanos , Esqui/fisiologia , Masculino , Feminino , Força Muscular/fisiologia , Composição Corporal/fisiologia , Adolescente , Contração Isométrica/fisiologia
4.
J Sports Med Phys Fitness ; 64(6): 526-531, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38385638

RESUMO

BACKGROUND: Physical activity may help prevent the development of adverse health disorders in children. Thus, it is fundamental to assess key physical skills, such as jumping and running, from an early age. Several studies proposed test batteries to evaluate these motor skills in preschoolers, but no research studied their association. Therefore, this study aimed to evaluate the relationship between jump performance, including force production parameters, and sprint performance in preschool children. METHODS: Twenty-nine preschoolers, aged 4 to 5, underwent assessments, including countermovement jumps (CMJ) and standing long jumps (SLJ) on a force plate. Then they performed a 10-meter linear sprint assessed using photocells. RESULTS: Regression models revealed that SLJ distance emerged as a significant predictor (R2=49.3%, P<0.001) of sprint horizontal velocity, while, for sprint momentum (R2=34.3%), both SLJ distance (P=0.004) and SLJ vertical peak force (P=0.036) were found to be significant predictors. CONCLUSIONS: The findings showed that short-distance (i.e., 10 m) linear sprint performance, both velocity and momentum, in preschoolers may be predicted mainly using SLJ assessment. These findings underscore the importance of early motor skill development in shaping physical abilities and their potential relationship in preschool children.


Assuntos
Desempenho Atlético , Destreza Motora , Corrida , Humanos , Pré-Escolar , Feminino , Masculino , Corrida/fisiologia , Destreza Motora/fisiologia , Desempenho Atlético/fisiologia , Teste de Esforço , Exercício Pliométrico
5.
Ind Health ; 62(1): 32-38, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-37150616

RESUMO

This study compared the relative performance of alternative frequency weightings of hand-transmitted vibration (HTV) to predict the extent of cold-induced vasoconstriction in the digital arteries of HTV workers. The cold response of digital arteries was related to measures of daily vibration exposure expressed in terms of r.m.s. acceleration magnitude normalised to an 8-h day, frequency weighted according to either the frequency weighting Wh defined in international standard ISO 5349-1:2001 (Ah(8) in ms-2 r.m.s.) or the hand-arm vascular frequency weighting Wp proposed in the ISO Technical Report 18570:2007 (Ap(8) in ms-2 r.m.s.). The measure of daily vibration exposure constructed with the frequency weighting Wp (Ap(8)) was a better predictor of the cold response of the digital arteries in the HTV workers than the metric derived from the conventional ISO frequency weighting Wh (Ah(8)). This finding suggests that a measure of daily vibration exposure constructed with the vascular weighting Wp, which gives more weight to intermediate- and high-frequency vibration (31.5-250 Hz), performed better for the prediction of cold induced digital arterial hyperresponsiveness than that obtained with the frequency weighting Wh recommended in ISO 5349-1 which gives more importance to lower frequency vibration (≤16 Hz).


Assuntos
Dedos , Exposição Ocupacional , Humanos , Dedos/irrigação sanguínea , Vibração/efeitos adversos , Mãos , Extremidade Superior , Artérias
6.
Sensors (Basel) ; 23(12)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37420673

RESUMO

During the secondary production of aluminum, upon melting the scrap in a furnace, there is the possibility of developing an aluminothermic reaction, which produces oxides in the molten metal bath. Aluminum oxides must be identified and removed from the bath, as they modify the chemical composition and reduce the purity of the product. Furthermore, accurate measurement of molten aluminum level in a casting furnace is crucial to obtain an optimal liquid metal flow rate which influences the final product quality and process efficiency. This paper proposes methods for the identification of aluminothermic reactions and molten aluminum levels in aluminum furnaces. An RGB Camera was used to acquire video from the furnace interior, and computer vision algorithms were developed to identify the aluminothermic reaction and melt level. The algorithms were developed to process the image frames of video acquired from the furnace. Results showed that the proposed system allowed the online identification of the aluminothermic reaction and the molten aluminum level present inside the furnace at a computation time of 0.7 s and 0.4 s per frame, respectively. The advantages and limitations of the different algorithms are presented and discussed.


Assuntos
Óxido de Alumínio , Alumínio , Alumínio/química , Óxidos/química
7.
Heliyon ; 9(4): e14382, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37151668

RESUMO

[This corrects the article DOI: 10.1016/j.heliyon.2022.e11702.].

8.
Sensors (Basel) ; 23(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36904742

RESUMO

Quality inspection in the industrial production field is experiencing a strong technological development that benefits from the combination of vision-based techniques with artificial intelligence algorithms. This paper initially addresses the problem of defect identification for circularly symmetric mechanical components, characterized by the presence of periodic elements. In the specific case of knurled washers, we compare the performances of a standard algorithm for the analysis of grey-scale image with a Deep Learning (DL) approach. The standard algorithm is based on the extraction of pseudo-signals derived from the conversion of the grey scale image of concentric annuli. In the DL approach, the component inspection is shifted from the entire sample to specific areas repeated along the object profile where the defect may occur. The standard algorithm provides better results in terms of accuracy and computational time with respect to the DL approach. Nevertheless, DL reaches accuracy higher than 99% when performance is evaluated targeting the identification of damaged teeth. The possibility of extending the methods and the results to other circularly symmetrical components is analyzed and discussed.

9.
Artigo em Inglês | MEDLINE | ID: mdl-36833467

RESUMO

BACKGROUND: The primary aim of this study was to assess how different conformations of the foot in individuals with Down syndrome affected the CoP during walking, and the secondary aim was to evaluate the effect of an excess of mass in young adults and children with Down syndrome and flat foot. The greater investigation of these aspects will allow for more targeted rehabilitation treatments to improve a patient's quality of life. METHODS: The tests were carried out on 217 subjects with Down syndrome, 65 children and 152 young adults, and on 30 healthy individuals, 19 children and 11 young adults. All subjects underwent gait analysis, and the group with Down syndrome was also assessed with baropodometric tests to evaluate foot morphology. RESULTS: The statistical analysis showed that within both the young adult and child groups, the CoP pattern in the anterior-posterior direction reflected a difficulty in proceeding in the walking direction compensated by a medio-lateral swing. The gait of children with Down syndrome was more impaired than that of young adults. In both young adults and children, a higher severity of impairment was found in overweight and obese female individuals. CONCLUSIONS: These results suggest that the sensory deficits and the development of hypotonic muscles and lax ligaments of the syndrome lead to morphological alterations of the foot that, combined with the physical characteristics of short stature and obesity, negatively impact the CoP pattern of people with Down syndrome during walking.


Assuntos
Síndrome de Down , Adulto Jovem , Criança , Humanos , Feminino , Qualidade de Vida , Pé/fisiologia , Marcha/fisiologia , Caminhada/fisiologia , Obesidade , Equilíbrio Postural/fisiologia
10.
Multimed Tools Appl ; 82(7): 11079-11098, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36118187

RESUMO

Recent developments in 3D graphic technologies enable the affordable and precise reconstruction of body scanned models that can be applied in a variety of verticals, such as fashion, fitness and wellness, and healthcare. The accuracy of body measurements is a crucial element for the successful application of avatars in the following use cases: Avatars that go beyond visual representation and offer intrinsic and precise anthropometric data defined as a smart body are discussed in this paper. In particular, this paper presents the Gate technology, an innovative, autonomous, sustainable body scanner, coupled with an automatic production pipeline and the concept of avatars as smart bodies. We present an accuracy study of scanning technology for scanning inanimate objects, as well as body parts versus the ground, by using an established accuracy scanning system. The results appear to be promising and confirm the hypothesis of applying the technology to the use cases discussed as well as broadening the research to other studies and future applications.

11.
Ergonomics ; 66(9): 1270-1279, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36351565

RESUMO

This study aims to investigate the effect of whole-body vibration along different axes on the response time (RT) of standing subjects during a customised psychomotor vigilance task (PVT). Twenty-five subjects were exposed to harmonic vibration with amplitude of 0.7 m/s2 RMS and frequencies between 1.5 Hz and 12.5 Hz. ANOVA was used to assess if the difference of RT with and without vibration had a statistical relevance. Results showed that the RT was statistically affected by the vibration only at frequencies below 2 Hz. The vibration at higher frequencies had a minor effect on the RT. The RTs during the vibration exposure was, on average, 15% higher than the RT post exposure. Practitioner summary: This study investigates the effects of whole-body vibration (WBV) along different axes on the response time (RT). We measured the RTs to a psychomotor vigilance task of 25 standing subject exposed to WBV. The cognitive response was statistically affected by the WBV and, on average RT have increased of 15%.


Assuntos
Posição Ortostática , Vibração , Humanos , Vibração/efeitos adversos , Tempo de Reação , Cognição
12.
Heliyon ; 8(11): e11702, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36425421

RESUMO

Background: the primary aim of this study is to analyse the energy parameters of patients with Down syndrome compared to a control group and secondly to verify whether the sport activity leads to differences in energy expenditure. Methods: 3 groups of subjects were identified: 8 healthy subjects and 147 subjects with Down syndrome, of whom 14 played sports at least once a week. An energy index was calculated, given by the ratio between potential and kinetic energy. Next, kinetic ad potential energy parameters were extrapolated at 60% of the gait cycle (propulsion phase). Findings: Down syndrome group was compared with the control group and emerged that the energy index was higher in the first one. No changes were found between Down syndrome and Down syndrome Sport groups. The analysis of the energy parameters showed that all parameters, except the medio-lateral kinetic energy, were higher in the control than in the Down syndrome groups. The potential energy, medio-lateral kinetic energy, and vertical were higher in the Down syndrome Sport group than in the Down syndrome group. The kinetic energy and the mean velocity were higher in the control group than in Down syndrome Sport group while the medio-lateral kinetic energy was lower. Interpretation: sport modified the parameter of potential energy but not that of kinetic energy, which continued to be different compared to the healthy group and increased the oscillations in the medio-lateral plane, which were double compared to Down syndrome group. The increase in potential energy, found to be almost equal to that of control group, indicates an increase in vertical oscillations. This could be because subjects who practise sports have stronger muscles that allow a greater push-off ability, which therefore increases their potential energy.

13.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 6394-6397, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892575

RESUMO

This case study was designed starting from our experience at CYBATHLON 2020. The specific aim of this work was to compare the effectiveness of different fatigue reducing stimulation strategies during cycling induced by Functional Electrical Stimulation (FES). The compared stimulation strategies were: traditional constant frequency trains (CFTs) at 30 and 40Hz, doublet frequency trains (DFTs) and spatially distributed sequential stimulation (SDSS) on the quadriceps muscles. One Spinal Cord Injured (SCI) subject (39 years, T5-T6, male, ASIA A) was involved in 12 experimental sessions during which the four strategies were tested in a randomized order during FES-induced cycling performed on a passive trike at a constant cadence of 35 RPM. FES was delivered to four muscle groups (quadriceps, gluteal muscles, hamstrings and gastrocnemius) for each leg. The performance was evaluated in terms of saturation time (i.e., the time elapsed from the beginning of the stimulation until the predetermined maximum value of current amplitude is reached) and root mean square error (RMSE) of the actual cadence with respect to the target value. SDSS achieved a statistical lower saturation time and a qualitative higher RMSE of the cadence with respect to CFTs both at 30 and 40Hz.Clinical relevance- Conversely to previous literature, SDSS seems to be ineffective to reduce muscle fatigue during FES-induced cycling. Further experiments are needed to confirm this result.


Assuntos
Terapia por Estimulação Elétrica , Traumatismos da Medula Espinal , Estimulação Elétrica , Humanos , Masculino , Fadiga Muscular , Traumatismos da Medula Espinal/terapia
14.
Sensors (Basel) ; 21(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34833779

RESUMO

Nowadays, the use of wearable inertial-based systems together with machine learning methods opens new pathways to assess athletes' performance. In this paper, we developed a neural network-based approach for the estimation of the Ground Reaction Forces (GRFs) and the three-dimensional knee joint moments during the first landing phase of the Vertical Drop Jump. Data were simultaneously recorded from three commercial inertial units and an optoelectronic system during the execution of 112 jumps performed by 11 healthy participants. Data were processed and sorted to obtain a time-matched dataset, and a non-linear autoregressive with external input neural network was implemented in Matlab. The network was trained through a train-test split technique, and performance was evaluated in terms of Root Mean Square Error (RMSE). The network was able to estimate the time course of GRFs and joint moments with a mean RMSE of 0.02 N/kg and 0.04 N·m/kg, respectively. Despite the comparatively restricted data set and slight boundary errors, the results supported the use of the developed method to estimate joint kinetics, opening a new perspective for the development of an in-field analysis method.


Assuntos
Articulação do Joelho , Aprendizado de Máquina , Fenômenos Biomecânicos , Humanos , Cinética , Redes Neurais de Computação
15.
Front Bioeng Biotechnol ; 9: 666841, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34291039

RESUMO

BACKGROUND: The etiology of Anterior Cruciate Ligament (ACL) injury in women football results from the interaction of several extrinsic and intrinsic risk factors. Extrinsic factors change dynamically, also due to fatigue. However, existing biomechanical findings concerning the impact of fatigue on the risk of ACL injuries remains inconsistent. We hypothesized that fatigue induced by acute workload in short and intense game periods, might in either of two ways: by pushing lower limbs mechanics toward a pattern close to injury mechanism, or alternatively by inducing opposed protective compensatory adjustments. AIM: In this study, we aimed at assessing the extent to which fatigue impact on joints kinematics and kinetics while performing repeated changes of direction (CoDs) in the light of the ACL risk factors. METHODS: This was an observational, cross-sectional associative study. Twenty female players (age: 20-31 years, 1st-2nd Italian division) performed a continuous shuttle run test (5-m) involving repeated 180°-CoDs until exhaustion. During the whole test, 3D kinematics and ground reaction forces were used to compute lower limb joints angles and internal moments. Measures of exercise internal load were: peak post-exercise blood lactate concentration, heart rate (HR) and perceived exertion. Continuous linear correlations between kinematics/kinetics waveforms (during the ground contact phase of the pivoting limb) and the number of consecutive CoD were computed during the exercise using a Statistical Parametric Mapping (SPM) approach. RESULTS: The test lasted 153 ± 72 s, with a rate of 14 ± 2 CoDs/min. Participants reached 95% of maximum HR and a peak lactate concentration of 11.2 ± 2.8 mmol/L. Exercise duration was inversely related to lactate concentration (r = -0.517, p < 0.01), while neither%HR max nor [La-] b nor RPE were correlated with test duration before exhaustion (p > 0.05). Alterations in lower limb kinematics were found in 100%, and in lower limb kinetics in 85% of the players. The most common kinematic pattern was a concurrent progressive reduction in hip and knee flexion angle at initial contact (10 players); 5 of them also showed a significantly more adducted hip. Knee extension moment decreased in 8, knee valgus moment increased in 5 players. A subset of participants showed a drift of pivoting limb kinematics that matches the known ACL injury mechanism; other players displayed less definite or even opposed behaviors. DISCUSSION: Players exhibited different strategies to cope with repeated CoDs, ranging from protective to potentially dangerous behaviors. While the latter was not a univocal effect, it reinforces the importance of individual biomechanical assessment when coping with fatigue.

16.
Gait Posture ; 89: 31-37, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34217951

RESUMO

BACKGROUND: Vertical whole-body vibration (vWBV) during work, recreation, and transportation can have detrimental effects on physical and mental health. Studies have shown that lateral vibration at low frequencies (<3 Hz) can result in changes to spatiotemporal gait parameters. There are few studies which explore spatiotemporal gait changes due to vertical vibration at higher frequencies (> 3 Hz). This study seeks to assess the effect of vWBV on spatiotemporal gait parameters at a greater range of frequencies (≤ 30 Hz). METHODS: Stride Frequency (SF), Stride Length (SL), and Center of Pressure velocity (CoPv) was measured in seven male subjects (23 ± 4 years, 1.79 ± 0.05 m, 73.9 ± 9.7 kg) during In-Place Walking and nine male subjects (29 ± 7 years, 1.78 ± 0.07 m, 77.8 ± 9.9 kg; mean ± SD) during Treadmill Walking while exposed to vWBV. Load cells measured ground reaction forces during In-Place Walking and sensorized insoles acquired under-foot pressure during Treadmill Walking. Statistical tests included a one-way repeated-measures ANOVA, post-hoc two way paired T-tests, statistical power (1-ß), correlation (R2), and effect size (Cohen's d). RESULTS: While statistical significance was not found for changes in SF, SL, or Mean CoPv, small to large effects were found in all measured spatiotemporal parameters of both setups. During Treadmill Walking, vWBV was correlated with a decrease in SF (R2 = 0.925), an increase in SL (R2 = 0.908), and an increase in Mean CoPv (R2 = 0.921) and Max CoPv (R2 = 0.952) with a significant increase (p < 0.0083) in Max CoPv at frequencies of 8 Hz and higher. SIGNIFICANCE: Study results demonstrated that vWBV influences spatiotemporal gait parameters at frequencies greater than previously studied.


Assuntos
Marcha , Vibração , Teste de Esforço , , Humanos , Masculino , Caminhada
17.
Ergonomics ; 64(8): 1002-1017, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33688787

RESUMO

Modelling the foot-ankle system (FAS) while exposed to foot-transmitted vibration (FTV) is essential for designing inhibition methods to prevent the effects of vibration-induced white-foot. K-means analysis was conducted on a data set containing vibration transmissibility from the floor to 24 anatomical locations on the right foot of 21 participants. The K-means analysis found three locations to be sufficient for summarising the FTV response. A three segment, four degrees-of-freedom lumped parameter model of the FAS was designed to model the transmissibility response at three locations when exposed to vertical vibration from 10 to 60 Hz. Reasonable results were found at the ankle, midfoot, and toes in the natural standing position (mean-squared error (ε) = 0.471, 0.089, 0.047) and forward centre of pressure (COP) (ε = 0.539, 0.058, 0.057). However, when the COP is backward, the model does not sufficiently capture the transmissibility response at the ankle (ε = 1.09, 0.219, 0.039). Practitioner summary The vibration transmissibility response of the foot-ankle system (FAS) was modelled with varying centre of pressure (COP) locations. Modelling the FAS using three transmissibility locations and two foot segments (rearfoot and forefoot) demonstrated reasonable results in a natural standing and forward COP position to test future intervention strategies. Abbreviations: COP: centre of pressure; DOF: degrees-of-freedom; FAS: foot-ankle system; FTV: foot-transmitted vibration; HAVS: hand-arm vibration syndrome; LDV: laser Doppler vibrometer; LP: lumped-parameter; VWT: vibration-induced white-toes; WBV: whole-body vibration.


Assuntos
Tornozelo , Vibração , Articulação do Tornozelo , , Humanos , Posição Ortostática , Vibração/efeitos adversos
18.
Sensors (Basel) ; 21(3)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513999

RESUMO

A promising but still scarcely explored strategy for the estimation of gait parameters based on inertial sensors involves the adoption of machine learning techniques. However, existing approaches are reliable only for specific conditions, inertial measurements unit (IMU) placement on the body, protocols, or when combined with additional devices. In this paper, we tested an alternative gait-events estimation approach which is fully data-driven and does not rely on a priori models or assumptions. High-frequency (512 Hz) data from a commercial inertial unit were recorded during 500 steps performed by 40 healthy participants. Sensors' readings were synchronized with a reference ground reaction force system to determine initial/terminal contacts. Then, we extracted a set of features from windowed data labeled according to the reference. Two gray-box approaches were evaluated: (1) classifiers (decision trees) returning the presence of a gait event in each time window and (2) a classifier discriminating between stance and swing phases. Both outputs were submitted to a deterministic algorithm correcting spurious clusters of predictions. The stance vs. swing approach estimated the stride time duration with an average error lower than 20 ms and confidence bounds between ±50 ms. These figures are suitable to detect clinically meaningful differences across different populations.


Assuntos
, Marcha , Aprendizado de Máquina , Algoritmos , Humanos
19.
Appl Ergon ; 90: 103283, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33049546

RESUMO

Whole-Body Vibration (WBV) is an occupational hazard affecting employees working with transportation, construction or heavy machinery. To minimize vibration-induced pathologies, ISO identified WBV exposure limits based on vibration transmissibility and apparent mass studies. The ISO guidelines do not account for variations in posture or movement. In our study, we measured the transmissibility and apparent mass at the mouth, lower back, and leg of participants during stationary and propelled walking. Stationary walking transmissibility was significantly higher at the lumbar spine and bite bar at 5 and 10 Hz compared to all higher frequencies while the distal tibia was lower at 5 Hz compared to 10 and 15 Hz. Propelled walking transmissibility was significantly higher at the bite bar and knee at 2 Hz than all higher frequencies. These results vary from previously published transmissibility values for static participants, showing that ISO standards should be adjusted for active workers.


Assuntos
Vibração , Caminhada , Humanos , Vértebras Lombares , Postura , Tíbia , Vibração/efeitos adversos
20.
Artigo em Inglês | MEDLINE | ID: mdl-32195243

RESUMO

The design of markerless systems to reconstruct human motion in a timely, unobtrusive and externally valid manner is still an open challenge. Artificial intelligence algorithms based on automatic landmarks identification on video images opened to a new approach, potentially e-viable with low-cost hardware. OpenPose is a library that t using a two-branch convolutional neural network allows for the recognition of skeletons in the scene. Although OpenPose-based solutions are spreading, their metrological performances relative to video setup are still largely unexplored. This paper aimed at validating a two-cameras OpenPose-based markerless system for gait analysis, considering its accuracy relative to three factors: cameras' relative distance, gait direction and video resolution. Two volunteers performed a walking test within a gait analysis laboratory. A marker-based optical motion capture system was taken as a reference. Procedures involved: calibration of the stereoscopic system; acquisition of video recordings, simultaneously with the reference marker-based system; video processing within OpenPose to extract the subject's skeleton; videos synchronization; triangulation of the skeletons in the two videos to obtain the 3D coordinates of the joints. Two set of parameters were considered for the accuracy assessment: errors in trajectory reconstruction and error in selected gait space-temporal parameters (step length, swing and stance time). The lowest error in trajectories (~20 mm) was obtained with cameras 1.8 m apart, highest resolution and straight gait, and the highest (~60 mm) with the 1.0 m, low resolution and diagonal gait configuration. The OpenPose-based system tended to underestimate step length of about 1.5 cm, while no systematic biases were found for swing/stance time. Step length significantly changed according to gait direction (p = 0.008), camera distance (p = 0.020), and resolution (p < 0.001). Among stance and swing times, the lowest errors (0.02 and 0.05 s for stance and swing, respectively) were obtained with the 1 m, highest resolution and straight gait configuration. These findings confirm the feasibility of tracking kinematics and gait parameters of a single subject in a 3D space using two low-cost webcams and the OpenPose engine. In particular, the maximization of cameras distance and video resolution enabled to achieve the highest metrological performances.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA