Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(24): e2308886, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38174607

RESUMO

Rechargeable Mg-ion Batteries (RMB) containing a Mg metal anode offer the promise of higher specific volumetric capacity, energy density, safety, and economic viability than lithium-ion battery technology, but their realization is challenging. The limited availability of suitable inorganic cathodes compatible with electrolytes relevant to Mg metal anode restricts the development of RMBs. Despite the promising capability of some oxides to reversibly intercalate Mg+2 ions at high potential, its lack of stability in chloride-containing ethereal electrolytes, relevant to Mg metal anode hinders the realization of a full practical RMB. Here the successful in situ encapsulation of monodispersed spherical V2O5 (≈200 nm) is demonstrated by a thin layer of VS2 (≈12 nm) through a facile surface reduction route. The VS2 layer protects the surface of V2O5 particles in RMB electrolyte solution (MgCl2 + MgTFSI in DME). Both V2O5 and V2O5@VS2 particles demonstrate high initial discharge capacity. However, only the V2O5@VS2 material demonstrates superior rate performance, Coulombic efficiency (100%), and stability (138 mA h g-1 discharge capacity after 100 cycles), signifying the ability of the thin VS2 layer to protect the V2O5 cathode and facilitate the Mg+2 ion intercalation/deintercalation into V2O5.

2.
Nat Nanotechnol ; 19(2): 208-218, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37798568

RESUMO

A critical current challenge in the development of all-solid-state lithium batteries (ASSLBs) is reducing the cost of fabrication without compromising the performance. Here we report a sulfide ASSLB based on a high-energy, Co-free LiNiO2 cathode with a robust outside-in structure. This promising cathode is enabled by the high-pressure O2 synthesis and subsequent atomic layer deposition of a unique ultrathin LixAlyZnzOδ protective layer comprising a LixAlyZnzOδ surface coating region and an Al and Zn near-surface doping region. This high-quality artificial interphase enhances the structural stability and interfacial dynamics of the cathode as it mitigates the contact loss and continuous side reactions at the cathode/solid electrolyte interface. As a result, our ASSLBs exhibit a high areal capacity (4.65 mAh cm-2), a high specific cathode capacity (203 mAh g-1), superior cycling stability (92% capacity retention after 200 cycles) and a good rate capability (93 mAh g-1 at 2C). This work also offers mechanistic insights into how to break through the limitation of using expensive cathodes (for example, Co-based) and coatings (for example, Nb-, Ta-, La- or Zr-based) while still achieving a high-energy ASSLB performance.

3.
Small ; 18(7): e2104625, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34882972

RESUMO

High-Ni-rich layered oxides [e.g., LiNix Coy Mnz O2 ; x > 0.5, x + y + z = 1] are considered one of the most promising cathodes for high-energy-density lithium-ion batteries (LIB). However, extreme electrode-electrolyte reactions, several interfacial issues, and structural instability restrict their practical applicability. Here, a shortened unconventional atomic surface reduction (ASR) technique is demonstrated on the cathode surface as a derivative of the conventional atomic layer deposition (ALD) process, which brings superior cell performances. The atomic surface reaction (reduction process) between diethyl-zinc (as a single precursor) and Ni-rich NMC cathode [LiNi0.8 Co0.1 Mn0.1 O2 ; NCM811] material is carried out using the ALD reactor at different temperatures. The temperature dependency of the process through advanced spectroscopy and microscopy studies is demonstrated and it is shown that thin surface film is formed at 100 °C, whereas at 200 °C a gradual atomic diffusion of Zn ions from the surface to the near-surface regions is taking place. This unique near-surface penetration of Zn ions significantly improves the electrochemical performance of the NCM811 cathode. This approach paves the way for utilizing vapor phase deposition processes to achieve both surface coatings and near-surface doping in a single reactor to stabilize high-energy cathode materials.

4.
ACS Appl Mater Interfaces ; 13(51): 61733-61741, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34904822

RESUMO

Owing to its high energy density, LiNi0.8Co0.1Mn0.1O2 (NMC811) is a cathode material of prime interest for electric vehicle battery manufacturers. However, NMC811 suffers from several irreversible parasitic reactions that lead to severe capacity fading and impedance buildup during prolonged cycling. Thin surface protection films coated on the cathode material mitigate degradative chemomechanical reactions at the electrode-electrolyte interphase, which helps to increase cycling stability. However, these coatings may impede the diffusion of lithium ions, and therefore, limit the performance of the cathode material at a high C-rate. Herein, we report on the synthesis of zirconium phosphate (ZrxPOy) and lithium-containing zirconium phosphate (LixZryPOz) coatings as artificial cathode-electrolyte interphases (ACEIs) on NMC811 using the atomic layer deposition technique. Upon prolonged cycling, the ZrxPOy- and LixZryPOz-coated NMC811 samples show 36.4 and 49.4% enhanced capacity retention, respectively, compared with the uncoated NMC811. Moreover, the addition of Li ions to the LixZryPOz coating enhances the rate performance and initial discharge capacity in comparison to the ZrxPOy-coated and uncoated samples. Using online electrochemical mass spectroscopy, we show that the coated ACEIs largely suppress the degradative parasitic side reactions observed with the uncoated NMC811 sample. Our study demonstrates that providing extra lithium to the ACEI layer improves the cycling stability of the NMC811 cathode material without sacrificing its rate capability performance.

5.
Small ; 17(51): e2104416, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34651425

RESUMO

To mitigate the associated challenges of instability and capacity improvement in Na3 V2 (PO4 )2 F3  (NVPF), rationally designed uniformly distributed hollow spherical NVPF and coating the surface of NVPF with ultrathin (≈2 nm) amorphous TiO2  by atomic layer deposition is demonstrated. The coating facilitates higher mobility of the ion through the cathode electrolyte interphase (CEI) and enables higher capacity during cycling. The TiO2 @NVPF exhibit discharge capacity of >120 mAhg-1 , even at 1C rates, and show lower irreversible capacity in the first cycle. Further, nearly 100% capacity retention after rate performance in high current densities and 99.9% coulombic efficiency after prolonged cycling in high current density is reported. The improved performance in TiO2 @NVPF is ascribed to the passivation behavior of TiO2  coating which protects the surface of NVPF from volume expansion, significantly less formation of carbonates, and decomposition of electrolyte, which is also validated through post cycling analysis. The study shows the importance of ultrathin surface protection artificial CEI for advanced sodium-ion battery cathodes. The protection layer is diminishing parasitic reaction, which eventually enhances the Na ion participation in reaction and stabilizes the cathode structure.

6.
ACS Appl Mater Interfaces ; 13(37): 44470-44478, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34515465

RESUMO

Li and Mn-rich nickel cobalt manganese oxide (LMR-NCM) is one of the most promising cathode materials for realizing next-generation Li-ion batteries due to its high specific capacity of >250 mA h g-1 and operating potential > 4.5 V. Nevertheless, being plagued by severe capacity fading and voltage decay, the commercialization of LMR-NCM appears to be a distant goal. The anionic activity of oxygen and associated phase transformations are the reasons behind the unstable electrochemical performance. The tendency of LMR-NCM to react with CO2 and moisture further makes it prone to interfacial instability and degradation. Here, we report a neoteric method to mitigate the stability issues and improve the electrochemical performance of LMR-NCM by changing the electronic configuration of constituting O and transition metals via diethylzinc-assisted atomic surface reduction (Zn-ASR) using an extremely facile protocol. With the proposed Zn-ASR, a 2-3 nm thin layer of a reduced surface enriched with complex ZnOx or ZnOxRy was obtained on the LMR-NCM particles. X-ray photoelectron spectroscopy suggested the transfer of ethyl groups of diethylzinc to O atoms on the LMR-NCM surface, which ultimately led to the reduction of near-surface Mn and Ni atoms and impeded irreversible anionic activity. The presence of ZnOx/ZnOxRy also resulted in superior charge transfer and resistance against HF. As a result, in contrast to LMR-NCM, the Zn-ASR-treated sample exhibited substantially improved rate capabilities, facilitated charge transfer, enhanced capacity retention, reduced parasitic reactions, and long-term stability as reflected from in-depth electrochemical analysis, in operando gaseous evolution studies, and post-mortem microscopic analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA