Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Virology ; 576: 134-140, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36244319

RESUMO

Gammaherpesviruses establish life-long infection in over 95% of adults and are associated with several cancers, including B cell lymphomas. Using the murine gammaherpesvirus 68 (MHV68) animal model, we previously showed a pro-viral role of Interleukin-1 (IL-1) signaling that supported viral reactivation during the establishment of chronic infection. Unexpectedly, in this study we found that the proviral effects of IL-1 signaling originally observed during the establishment of chronic gammaherpesvirus infection convert to antiviral effects during the long-term stage of infection. Specifically, IL-1 signaling promoted expansion of antiviral CD8+ T cells and control of viral reactivation in the peritoneal cavity of a long-term infected host. Using a novel mouse model of T cell-specific IL-1 signaling deficiency, we found that the antiviral effects of IL-1 signaling were T cell extrinsic. Our study highlights a dynamic nature of host factors that shape the parameters of chronic gammaherpesvirus infection.


Assuntos
Gammaherpesvirinae , Infecções por Herpesviridae , Interleucina-1 , Animais , Camundongos , Antivirais , Linfócitos B , Linfócitos T CD8-Positivos/patologia , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/metabolismo , Interleucina-1/imunologia , Interleucina-1/metabolismo , Camundongos Endogâmicos C57BL , Latência Viral
2.
J Virol ; 96(20): e0126022, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36169331

RESUMO

Gammaherpesviruses infect most vertebrate species and are associated with B cell lymphomas. Manipulation of B cell differentiation is critical for natural infection and lymphomagenesis driven by gammaherpesviruses. Specifically, human Epstein-Barr virus (EBV) and murine gammaherpesvirus 68 (MHV68) drive differentiation of infected naive B cells into the germinal center to achieve exponential increase in the latent viral reservoir during the establishment of chronic infection. Infected germinal center B cells are also the target of viral lymphomagenesis, as most EBV-positive B cell lymphomas bear the signature of the germinal center response. All gammaherpesviruses encode a protein kinase, which, in the case of Kaposi's sarcoma-associated herpesvirus (KSHV) and MHV68, is sufficient and necessary, respectively, to drive B cell differentiation in vivo. In this study, we used the highly tractable MHV68 model of chronic gammaherpesvirus infection to unveil an antagonistic relationship between MHV68 protein kinase and interferon regulatory factor 1 (IRF-1). IRF-1 deficiency had minimal effect on the attenuated lytic replication of the kinase-null MHV68 in vivo. In contrast, the attenuated latent reservoir of the kinase-null MHV68 was partially to fully rescued in IRF-1-/- mice, along with complete rescue of the MHV68-driven germinal center response. Thus, the novel viral protein kinase-IRF-1 antagonism was largely limited to chronic infection dominated by viral latency and was less relevant for lytic replication during acute infection and in vitro. Given the conserved nature of the viral and host protein, the antagonism between the two, as defined in this study, may regulate gammaherpesvirus infection across species. IMPORTANCE Gammaherpesviruses are prevalent pathogens that manipulate physiological B cell differentiation to establish lifelong infection. This manipulation is also involved in gammaherpesvirus-driven B cell lymphomas, as differentiation of latently infected B cells through the germinal center response targets these for transformation. In this study, we define a novel antagonistic interaction between a conserved gammaherpesvirus protein kinase and a host antiviral and tumor suppressor transcription factor. The virus-host antagonism unveiled in this study was critically important to shape the magnitude of gammaherpesvirus-driven germinal center response. In contrast, the virus-host antagonism was far less relevant for lytic viral replication in vitro and during acute infection in vivo, highlighting the emerging concept that nonoverlapping mechanisms shape the parameters of acute and chronic gammaherpesvirus infection.


Assuntos
Infecções por Vírus Epstein-Barr , Gammaherpesvirinae , Infecções por Herpesviridae , Linfoma de Células B , Rhadinovirus , Camundongos , Humanos , Animais , Fator Regulador 1 de Interferon/metabolismo , Proteínas Quinases/metabolismo , Infecção Persistente , Infecções por Herpesviridae/metabolismo , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Gammaherpesvirinae/metabolismo , Rhadinovirus/metabolismo , Latência Viral , Antivirais/metabolismo , Camundongos Endogâmicos C57BL
3.
mBio ; 13(4): e0210722, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35968944

RESUMO

Gammaherpesviruses establish lifelong infections in most vertebrate species, including humans and rodents, and are associated with cancers, including B cell lymphomas. While type I and II interferon (IFN) systems of the host are critical for the control of acute and chronic gammaherpesvirus infection, the cell type-specific role(s) of IFN signaling during infection is poorly understood and is often masked by the profoundly altered viral pathogenesis in the hosts with global IFN deficiencies. STAT1 is a critical effector of all classical IFN responses along with its involvement in other cytokine signaling pathways. In this study, we defined the effect of T cell-specific STAT1 deficiency on the viral and host parameters of infection with murine gammaherpesvirus 68 (MHV68). MHV68 is a natural rodent pathogen that, similar to human gammaherpesviruses, manipulates and usurps B cell differentiation to establish a lifelong latent reservoir in B cells. Specifically, germinal center B cells host the majority of latent MHV68 reservoir in the lymphoid organs, particularly at the peak of viral latency. Unexpectedly, T cell-specific STAT1 expression, while limiting the overall expansion of the germinal center B cell population during chronic infection, rendered these B cells more effective at hosting the latent virus reservoir. Further, T cell-specific STAT1 expression in a wild type host limited circulating levels of IFNγ, with corresponding increases in lytic MHV68 replication and viral reactivation. Thus, our study unveils an unexpected proviral role of T cell-specific STAT1 expression during gammaherpesvirus infection of a natural intact host. IMPORTANCE Interferons (IFNs) represent a major antiviral host network vital to the control of multiple infections, including acute and chronic gammaherpesvirus infections. Ubiquitously expressed STAT1 plays a critical effector role in all classical IFN responses. This study utilized a mouse model of T cell-specific STAT1 deficiency to define cell type-intrinsic role of STAT1 during natural gammaherpesvirus infection. Unexpectedly, T cell-specific loss of STAT1 led to better control of acute and persistent gammaherpesvirus replication and decreased establishment of latent viral reservoir in B cells, revealing a surprisingly diverse proviral role of T cell-intrinsic STAT1.


Assuntos
Gammaherpesvirinae , Infecções por Herpesviridae , Rhadinovirus , Animais , Gammaherpesvirinae/genética , Interações Hospedeiro-Patógeno , Humanos , Interferons/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Linfócitos T/metabolismo , Latência Viral/fisiologia
4.
J Virol ; 96(14): e0063922, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35758659

RESUMO

Gammaherpesviruses, such as human Epstein-Barr virus (EBV) and murine gammaherpesvirus 68 (MHV68), are species-specific, ubiquitous pathogens that are associated with multiple cancers, including B cell lymphomas. These viruses have a natural tropism for B cells and usurp B cell differentiation to drive a unique and robust polyclonal germinal center response to establish a long-term latent reservoir in memory B cells. The robust polyclonal germinal center response driven by gammaherpesvirus infection increases the risk for B cell transformation. Unsurprisingly, many gammaherpesvirus cancers are derived from germinal center or post-germinal center B cells. The viral and host factors that influence the gammaherpesvirus-driven germinal center response are not clearly defined. We previously showed that host interleukin 17 receptor A (IL-17RA) signaling promotes the establishment of chronic MHV68 infection and the MHV68-driven germinal center response. In this study, we found that T cell-intrinsic IL-17RA signaling recapitulates some proviral aspects of global IL-17RA signaling during MHV68 infection. Specifically, we found that T cell-intrinsic IL-17RA signaling supports the MHV68-driven germinal center response, the establishment of latency in the spleen, and viral reactivation in the spleen and peritoneal cavity. Our study unveils an unexpected finding where the T cell-specific IL-17RA signaling supports the establishment of a latent reservoir of a B cell-tropic gammaherpesvirus. IMPORTANCE Gammaherpesviruses, such as human EBV, establish lifelong infection in >95% of adults and are associated with B cell lymphomas. Gammaherpesviruses usurp the germinal center response to establish latent infection, and the germinal center B cells are thought to be the target of viral transformation. We previously found that global expression of IL-17RA promotes the establishment of chronic MHV68 infection and the MHV68-driven germinal center response. In this study, we showed that T cell-intrinsic IL-17RA signaling is necessary to promote the MHV68-driven germinal center response by supporting CD4+ T follicular helper cell expansion. We also found that T cell-intrinsic IL-17RA signaling contributes to but is not solely responsible for the systemic proviral role of IL-17RA signaling, highlighting the multifaceted function of IL-17RA signaling during MHV68 infection.


Assuntos
Infecções por Herpesviridae , Receptores de Interleucina-17 , Rhadinovirus , Transdução de Sinais , Linfócitos T , Animais , Infecções por Herpesviridae/virologia , Humanos , Linfoma de Células B , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Interleucina-17/metabolismo , Rhadinovirus/fisiologia , Linfócitos T/metabolismo , Linfócitos T/virologia
5.
J Virol ; 95(20): e0072621, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34346769

RESUMO

Gammaherpesviruses are ubiquitous pathogens that establish lifelong infection and are associated with B cell lymphomas. To establish chronic infection, these viruses usurp B cell differentiation and drive a robust germinal center response to expand the latent viral reservoir and gain access to memory B cells. Germinal center B cells, while important for the establishment of latent infection, are also thought to be the target of viral transformation. The host and viral factors that impact the gammaherpesvirus-driven germinal center response are not clearly defined. We show that the global expression of the antiviral and tumor suppressor interferon regulatory factor 1 (IRF-1) selectively attenuates the murine gammaherpesvirus 68 (MHV68)-driven germinal center response and restricts the expansion of the latent viral reservoir. In this study, we found that T cell-intrinsic IRF-1 expression recapitulates some aspects of the antiviral state imposed by IRF-1 during chronic MHV68 infection, including the attenuation of the germinal center response and viral latency in the spleen. We also discovered that global and T cell-intrinsic IRF-1 deficiency leads to an unhindered rise of interleukin-17A (IL-17A)-expressing and follicular helper T cell populations, two CD4+ T cell subsets that support chronic MHV68 infection. Thus, this study unveils a novel aspect of the antiviral activity of IRF-1 by demonstrating IRF-1-mediated suppression of specific CD4+ T cell subsets that support chronic gammaherpesvirus infection. IMPORTANCE Gammaherpesviruses infect over 95% of the adult population, last the lifetime of the host, and are associated with multiple cancers. These viruses usurp the germinal center response to establish lifelong infection in memory B cells. This manipulation of B cell differentiation by the virus is thought to contribute to lymphomagenesis, although exactly how the virus precipitates malignant transformation in vivo is unclear. IRF-1, a host transcription factor and a known tumor suppressor, restricts the MHV68-driven germinal center response in a B cell-extrinsic manner. We found that T cell-intrinsic IRF-1 expression attenuates the MHV68-driven germinal center response by restricting the CD4+ T follicular helper population. Furthermore, our study identified IRF-1 as a novel negative regulator of IL-17-driven immune responses, highlighting the multifaceted role of IRF-1 in gammaherpesvirus infection.


Assuntos
Infecções por Herpesviridae/genética , Fator Regulador 1 de Interferon/genética , Animais , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/fisiologia , Diferenciação Celular/genética , Feminino , Gammaherpesvirinae/genética , Gammaherpesvirinae/patogenicidade , Centro Germinativo/imunologia , Infecções por Herpesviridae/metabolismo , Infecções por Herpesviridae/virologia , Interações Hospedeiro-Patógeno/imunologia , Fator Regulador 1 de Interferon/metabolismo , Interleucina-17/metabolismo , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Baço/virologia , Linfócitos T Auxiliares-Indutores/imunologia , Latência Viral/imunologia
6.
J Virol ; 95(17): e0064921, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34105999

RESUMO

Gammaherpesviruses are ubiquitous pathogens that establish lifelong infections in >95% of adults worldwide and are associated with several cancers. We have shown that endogenous cholesterol synthesis supports gammaherpesvirus replication. However, the role of exogenous cholesterol exchange and signaling during infection remains poorly understood. Extracellular cholesterol is carried in the serum by several lipoproteins, including low-density lipoproteins (LDL). The LDL receptor (LDL-R) mediates the endocytosis of these cholesterol-rich LDL particles into the cell, thereby supplying the cell with cholesterol. We found that LDL-R expression attenuates gammaherpesvirus replication during the early stages of the replication cycle, as evident by increased viral gene expression in LDL-R-/- primary macrophages. This was not observed in primary fibroblasts, indicating that the antiviral effects of LDL-R are cell type specific. Increased viral gene expression in LDL-R-/- primary macrophages was due to increased activity of the endogenous cholesterol synthesis pathway. Intriguingly, despite type I interferon-driven increase in LDL-R mRNA levels in infected macrophages, protein levels of LDL-R continually decreased over the single cycle of viral replication. Thus, our study has uncovered an intriguing tug of war between the LDL-R-driven antiviral effect on cholesterol metabolism and the viral targeting of the LDL-R protein. IMPORTANCE LDL-R is a cell surface receptor that mediates the endocytosis of cholesterol-rich low-density lipoproteins, allowing cells to acquire cholesterol exogenously. Several RNA viruses usurp LDL-R function to facilitate replication; however, the role of LDL-R in DNA virus infection remains unknown. Gammaherpesviruses are double-stranded DNA viruses that are associated with several cancers. Here, we show that LDL-R attenuates gammaherpesvirus replication in primary macrophages by decreasing endogenous cholesterol synthesis activity, a pathway known to support gammaherpesvirus replication. In response, LDL-R protein levels are decreased in infected cells to mitigate the antiviral effects, revealing an intriguing tug of war between the virus and the host.


Assuntos
Colesterol/biossíntese , Gammaherpesvirinae/fisiologia , Infecções por Herpesviridae/prevenção & controle , Lipogênese , Macrófagos/metabolismo , Receptores de LDL/metabolismo , Replicação Viral , Animais , Feminino , Infecções por Herpesviridae/patologia , Infecções por Herpesviridae/virologia , Interações Hospedeiro-Patógeno , Interferon Tipo I/metabolismo , Macrófagos/patologia , Macrófagos/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de LDL/genética , Transdução de Sinais
7.
J Virol ; 95(17): e0085921, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34132573

RESUMO

Gammaherpesviruses establish lifelong infections and are associated with B cell lymphomas. Murine gammaherpesvirus 68 (MHV68) infects epithelial and myeloid cells during acute infection, with subsequent passage of the virus to B cells, where physiological B cell differentiation is usurped to ensure the establishment of a chronic latent reservoir. Interferons (IFNs) represent a major antiviral defense system that engages the transcriptional factor STAT1 to attenuate diverse acute and chronic viral infections, including those of gammaherpesviruses. Correspondingly, global deficiency of type I or type II IFN signaling profoundly increases the pathogenesis of acute and chronic gammaherpesvirus infection, compromises host survival, and impedes mechanistic understanding of cell type-specific role of IFN signaling. Here, we demonstrate that myeloid-specific STAT1 expression attenuates acute and persistent MHV68 replication in the lungs and suppresses viral reactivation from peritoneal cells, without any effect on the establishment of viral latent reservoir in splenic B cells. All gammaherpesviruses encode a conserved protein kinase that antagonizes type I IFN signaling in vitro. Here, we show that myeloid-specific STAT1 deficiency rescues the attenuated splenic latent reservoir of the kinase-null MHV68 mutant. However, despite having gained access to splenic B cells, the protein kinase-null MHV68 mutant fails to drive B cell differentiation. Thus, while myeloid-intrinsic STAT1 expression must be counteracted by the gammaherpesvirus protein kinase to facilitate viral passage to splenic B cells, expression of the viral protein kinase continues to be required to promote optimal B cell differentiation and viral reactivation, highlighting the multifunctional nature of this conserved viral protein during chronic infection. IMPORTANCE IFN signaling is a major antiviral system of the host that suppresses replication of diverse viruses, including acute and chronic gammaherpesvirus infection. STAT1 is a critical member and the primary antiviral effector of IFN signaling pathways. Given the significantly compromised antiviral status of global type I or type II IFN deficiency, unabated gammaherpesvirus replication and pathogenesis hinders understanding of cell type-specific antiviral effects. In this study, a mouse model of myeloid-specific STAT1 deficiency unveiled site-specific antiviral effects of STAT1 in the lungs and peritoneal cavity, but not the spleen, of chronically infected hosts. Interestingly, expression of a conserved gammaherpesvirus protein kinase was required to counteract the antiviral effects of myeloid-specific STAT1 expression to facilitate latent infection of splenic B cells, revealing a cell type-specific virus-host antagonism during the establishment of chronic gammaherpesvirus infection.


Assuntos
Antivirais/farmacologia , Linfócitos B/virologia , Gammaherpesvirinae/enzimologia , Infecções por Herpesviridae/virologia , Proteínas Quinases/metabolismo , Fator de Transcrição STAT1/fisiologia , Latência Viral , Animais , Interações Hospedeiro-Patógeno , Interferons/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/metabolismo , Proteínas Quinases/genética , Baço/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Ativação Viral
8.
mBio ; 12(2)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824206

RESUMO

Gammaherpesviruses establish lifelong infection and are associated with a variety of cancers, including B cell lymphomas. These viruses manipulate the B cell differentiation process to establish lifelong infection in memory B cells. Specifically, gammaherpesviruses infect naive B cells and promote entry of both infected and uninfected naive B cells into germinal centers, where the virus usurps rapid proliferation of germinal center B cells to exponentially increase its cellular latent reservoir. In addition to facilitating the establishment of latent infection, germinal center B cells are thought to be the target of viral transformation. In this study, we have uncovered a novel proviral role of host interleukin 17A (IL-17A), a well-established antibacterial and antifungal factor. Loss of IL-17A signaling attenuated the establishment of chronic gammaherpesvirus infection and gammaherpesvirus-driven germinal center response in a route of inoculation-dependent manner. Further, IL-17A treatment directly supported gammaherpesvirus reactivation and de novo lytic infection. This study is the first demonstration of a multifaceted proviral role of IL-17 signaling.IMPORTANCE Gammaherpesviruses establish lifelong infections in a majority of humans and are associated with B cell lymphomas. IL-17A is a host cytokine that plays a well-established role in the clearance of bacterial and fungal infections; however, the role of IL-17A in viral infections is poorly understood. In this study, we show that IL-17A signaling promoted the establishment of chronic gammaherpesvirus infection following the mucosal route of infection, viral lytic replication, and reactivation from latency. Thus, our study unveils a novel proviral role of IL-17A signaling in gammaherpesvirus infection.


Assuntos
Gammaherpesvirinae/imunologia , Infecções por Herpesviridae/imunologia , Interações Hospedeiro-Patógeno/imunologia , Interleucina-17/imunologia , Transdução de Sinais/imunologia , Animais , Células Cultivadas , Doença Crônica , Feminino , Interações Hospedeiro-Patógeno/genética , Interleucina-17/genética , Macrófagos/imunologia , Macrófagos/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
9.
J Virol ; 95(9)2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33597211

RESUMO

Gammaherpesviruses are ubiquitous pathogens that establish lifelong infections and are associated with several malignancies, including B cell lymphomas. Uniquely, these viruses manipulate B cell differentiation to establish long-term latency in memory B cells. This study focuses on the interaction between gammaherpesviruses and interferon regulatory factor 3 (IRF-3), a ubiquitously expressed transcription factor with multiple direct target genes, including beta interferon (IFN-ß), a type I IFN. IRF-3 attenuates acute replication of a plethora of viruses, including gammaherpesvirus. Furthermore, IRF-3-driven IFN-ß expression is antagonized by the conserved gammaherpesvirus protein kinase during lytic virus replication in vitro In this study, we have uncovered an unexpected proviral role of IRF-3 during chronic gammaherpesvirus infection. In contrast to the antiviral activity of IRF-3 during acute infection, IRF-3 facilitated establishment of latent gammaherpesvirus infection in B cells, particularly, germinal center and activated B cells, the cell types critical for both natural infection and viral lymphomagenesis. This proviral role of IRF-3 was further modified by the route of infection and viral dose. Furthermore, using a combination of viral and host genetics, we show that IRF-3 deficiency does not rescue attenuated chronic infection of a protein kinase null gammaherpesvirus mutant, highlighting the multifunctional nature of the conserved gammaherpesvirus protein kinases in vivo In summary, this study unveils an unexpected proviral nature of the classical innate immune factor, IRF-3, during chronic virus infection.IMPORTANCE Interferon regulatory factor 3 (IRF-3) is a critical component of the innate immune response, in part due to its transactivation of beta interferon (IFN-ß) expression. Similar to that observed in all acute virus infections examined to date, IRF-3 suppresses lytic viral replication during acute gammaherpesvirus infection. Because gammaherpesviruses establish lifelong infection, this study aimed to define the antiviral activity of IRF-3 during chronic infection. Surprisingly, we found that, in contrast to acute infection, IRF-3 supported the establishment of gammaherpesvirus latency in splenic B cells, revealing an unexpected proviral nature of this classical innate immune host factor.


Assuntos
Gammaherpesvirinae/imunologia , Infecções por Herpesviridae , Interações Hospedeiro-Patógeno/imunologia , Fator Regulador 3 de Interferon/imunologia , Latência Viral/imunologia , Animais , Linfócitos B/citologia , Linfócitos B/imunologia , Doença Crônica , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células NIH 3T3 , Baço/citologia , Baço/imunologia , Baço/virologia
10.
J Virol ; 94(24)2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32967960

RESUMO

Gammaherpesviruses are ubiquitous pathogens that establish lifelong infections and are associated with a variety of malignancies, including lymphomas. Interferon regulatory factor 7 (IRF-7) is an innate immune transcription factor that restricts acute replication of diverse viruses, including murine gammaherpesvirus 68 (MHV68). Importantly, very little is known about the role of IRF-7 during chronic virus infections. In this study, we demonstrate that IRF-7 attenuates chronic infection by restricting establishment of gammaherpesvirus latency in the peritoneal cavity and, to a lesser extent, viral reactivation in the spleen. Despite the classical role of IRF-7 as a stimulator of type I interferon (IFN) transcription, there were no global effects on the expression of IFN-induced genes (ISGs) in the absence of IRF-7, with only a few ISGs showing attenuated expression in IRF-7-deficient peritoneal cells. Further, IRF-7 expression was dispensable for the induction of a virus-specific CD8 T cell response. In contrast, IRF-7 expression restricted latent gammaherpesvirus infection in the peritoneal cavity under conditions where the viral latent reservoir is predominantly hosted by peritoneal B cells. This report is the first demonstration of the antiviral role of IRF-7 during the chronic stage of gammaherpesvirus infection.IMPORTANCE The innate immune system of the host is critical for the restriction of acute viral infections. In contrast, the role of the innate immune network during chronic herpesvirus infection remains poorly defined. Interferon regulatory factor 7 (IRF-7) is a transcription factor with many target genes, including type I interferons (IFNs). In this study, we show that the antiviral role of IRF-7 continues into the chronic phase of gammaherpesvirus infection, wherein IRF-7 restricts the establishment of viral latency and viral reactivation. This study is, to our knowledge, the first to define the role of IRF-7 in chronic virus infection.


Assuntos
Gammaherpesvirinae/imunologia , Infecções por Herpesviridae/imunologia , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/imunologia , Fator Regulador 7 de Interferon/metabolismo , Adenosina Desaminase , Animais , Linfócitos T CD8-Positivos/imunologia , Infecções por Herpesviridae/virologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Fator Regulador 7 de Interferon/efeitos dos fármacos , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Baço/virologia , Latência Viral
11.
J Virol ; 94(13)2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32321819

RESUMO

Gammaherpesviruses are ubiquitous pathogens that are associated with cancers, including B cell lymphomas. These viruses are unique in that they infect naive B cells and subsequently drive a robust polyclonal germinal center response in order to amplify the latent reservoir and to establish lifelong infection in memory B cells. The gammaherpesvirus-driven germinal center response in combination with robust infection of germinal center B cells is thought to precipitate lymphomagenesis. Importantly, host and viral factors that selectively affect the gammaherpesvirus-driven germinal center response remain poorly understood. Global deficiency of antiviral tumor-suppressive interferon regulatory factor 1 (IRF-1) selectively promotes the murine gammaherpesvirus 68 (MHV68)-driven germinal center response and expansion of the viral latent reservoir. To determine the extent to which antiviral effects of IRF-1 are B cell intrinsic, we generated mice with conditional IRF-1 deficiency. Surprisingly, B cell-specific IRF-1 deficiency attenuated the establishment of chronic infection and the germinal center response, indicating that MHV68 may, in a B cell-intrinsic manner, usurp IRF-1 to promote the germinal center response and expansion of the latent reservoir. Further, we found that B cell-specific IRF-1 deficiency led to reduced levels of active tyrosine phosphatase SHP1, which plays a B cell-intrinsic proviral function during MHV68 infection. Finally, results of this study indicate that the antiviral functions of IRF-1 unveiled in MHV68-infected mice with global IRF-1 deficiency are mediated via IRF-1 expression by non-B cell populations.IMPORTANCE Gammaherpesviruses establish lifelong infection in over 95% of all adults and are associated with B cell lymphomas. The virus's manipulation of the germinal center response and B cell differentiation to establish lifelong infection is thought to also precipitate malignant transformation, through a mechanism that remains poorly understood. The host transcription factor IRF-1, a well-established tumor suppressor, selectively attenuates MHV68-driven germinal center response, a phenotype that we originally hypothesized to occur in a B cell-intrinsic manner. In contrast, in testing, B cell-intrinsic IRF-1 expression promoted the MHV68-driven germinal center response and the establishment of chronic infection. Our report highlights the underappreciated multifaceted role of IRF-1 in MHV68 infection and pathogenesis.


Assuntos
Linfócitos B/imunologia , Gammaherpesvirinae/genética , Fator Regulador 1 de Interferon/genética , Animais , Linfócitos B/metabolismo , Feminino , Gammaherpesvirinae/metabolismo , Centro Germinativo/imunologia , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/metabolismo , Infecções por Herpesviridae/virologia , Interações Hospedeiro-Patógeno , Fator Regulador 1 de Interferon/metabolismo , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Baço/virologia , Latência Viral/genética
12.
J Virol ; 94(1)2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31597758

RESUMO

Gammaherpesviruses are ubiquitous pathogens that establish lifelong infections in the majority of adults worldwide. Chronic gammaherpesvirus infection has been implicated in both lymphomagenesis and, somewhat controversially, autoimmune disease development. Pathogenesis is largely associated with the unique ability of gammaherpesviruses to usurp B cell differentiation, specifically, the germinal center response, to establish long-term latency in memory B cells. The host tyrosine phosphatase SHP1 is known as a brake on immune cell activation and is downregulated in several gammaherpesvirus-driven malignancies. However, here we demonstrate that B cell- but not T cell-intrinsic SHP1 expression supports the gammaherpesvirus-driven germinal center response and the establishment of viral latency. Furthermore, B cell-intrinsic SHP1 deficiency cooperated with gammaherpesvirus infection to increase the levels of double-stranded DNA-reactive antibodies at the peak of viral latency. Thus, in spite of decreased SHP1 levels in gammaherpesvirus-driven B cell lymphomas, B cell-intrinsic SHP1 expression plays a proviral role during the establishment of chronic infection, suggesting that the gammaherpesvirus-SHP1 interaction is more nuanced and is modified by the stage of infection and pathogenesis.IMPORTANCE Gammaherpesviruses establish lifelong infection in a majority of adults worldwide and are associated with a number of malignancies, including B cell lymphomas. These viruses infect naive B cells and manipulate B cell differentiation to achieve a lifelong infection of memory B cells. The germinal center stage of B cell differentiation is important as both an amplifier of the viral latent reservoir and the target of malignant transformation. In this study, we demonstrate that expression of tyrosine phosphatase SHP1, a negative regulator that normally limits the activation and proliferation of hematopoietic cells, enhances the gammaherpesvirus-driven germinal center response and the establishment of chronic infection. The results of this study uncover an intriguing beneficial interaction between gammaherpesviruses that are presumed to profit from B cell activation and a cellular phosphatase that is traditionally perceived to be a negative regulator of the same processes.


Assuntos
Linfócitos B/imunologia , Centro Germinativo/imunologia , Infecções por Herpesviridae/genética , Interações Hospedeiro-Patógeno/genética , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Rhadinovirus/genética , Infecções Tumorais por Vírus/genética , Animais , Anticorpos Antinucleares/biossíntese , Linfócitos B/virologia , Doença Crônica , DNA/genética , DNA/imunologia , Feminino , Centro Germinativo/virologia , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/patologia , Infecções por Herpesviridae/virologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Memória Imunológica , Ativação Linfocitária , Masculino , Camundongos , Camundongos Transgênicos , Cultura Primária de Células , Proteína Tirosina Fosfatase não Receptora Tipo 6/deficiência , Proteína Tirosina Fosfatase não Receptora Tipo 6/imunologia , Rhadinovirus/imunologia , Rhadinovirus/patogenicidade , Linfócitos T/imunologia , Linfócitos T/virologia , Infecções Tumorais por Vírus/imunologia , Infecções Tumorais por Vírus/patologia , Infecções Tumorais por Vírus/virologia , Latência Viral/genética , Latência Viral/imunologia
13.
J Virol ; 93(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30602604

RESUMO

Gammaherpesviruses are ubiquitous viruses that establish lifelong infections. Importantly, these viruses are associated with numerous cancers and lymphoproliferative diseases. While risk factors for developing gammaherpesvirus-driven cancers are poorly understood, it is clear that elevated viral reactivation from latency often precedes oncogenesis. Here, we demonstrate that the liver X receptor alpha isoform (LXRα) restricts gammaherpesvirus reactivation in an anatomic-site-specific manner. We have previously demonstrated that deficiency of both LXR isoforms (α and ß) leads to an increase in fatty acid and cholesterol synthesis in primary macrophage cultures, with a corresponding increase in gammaherpesvirus replication. Interestingly, expression of fatty acid synthesis genes was not derepressed in LXRα-deficient hosts, indicating that the antiviral effects of LXRα are independent of lipogenesis. Additionally, the critical host defenses against gammaherpesvirus reactivation, virus-specific CD8+ T cells and interferon (IFN) signaling, remained intact in the absence of LXRα. Remarkably, using a murine gammaherpesvirus 68 (MHV68) reporter virus, we discovered that LXRα expression dictates the cellular tropism of MHV68 in the peritoneal cavity. Specifically, LXRα-/- mice exhibit reduced latency within the peritoneal B cell compartment and elevated latency within F4/80+ cells. Thus, LXRα restricts gammaherpesvirus reactivation through a novel mechanism that is independent of the known CD8+ T cell-based antiviral responses or changes in lipid synthesis and likely involves changes in the tropism of MHV68 in the peritoneal cavity.IMPORTANCE Liver X receptors (LXRs) are nuclear receptors that mediate cholesterol and fatty acid homeostasis. Importantly, as ligand-activated transcription factors, LXRs represent potential targets for the treatment of hypercholesterolemia and atherosclerosis. Here, we demonstrate that LXRα, one of the two LXR isoforms, restricts reactivation of latent gammaherpesvirus from peritoneal cells. As gammaherpesviruses are ubiquitous oncogenic agents, LXRs may represent a targetable host factor for the treatment of poorly controlled gammaherpesvirus infection and associated lymphomagenesis.


Assuntos
Linfócitos B/virologia , Gammaherpesvirinae/imunologia , Gammaherpesvirinae/fisiologia , Infecções por Herpesviridae/imunologia , Receptores X do Fígado/imunologia , Cavidade Peritoneal/virologia , Latência Viral/imunologia , Animais , Linfócitos B/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Feminino , Infecções por Herpesviridae/virologia , Interações Hospedeiro-Patógeno/imunologia , Interferons/imunologia , Lipogênese/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peritônio/imunologia , Peritônio/virologia , Transdução de Sinais/imunologia , Tropismo/imunologia , Ativação Viral/imunologia , Replicação Viral/imunologia
14.
Virology ; 526: 52-60, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30342302

RESUMO

Endogenous retroviruses (ERVs) comprise 10% of the genome, with many of these transcriptionally silenced post early embryogenesis. Several stimuli, including exogenous virus infection and cellular transformation can reactivate ERV expression via a poorly understood mechanism. We identified Interferon Regulatory Factor 1 (IRF-1), a tumor suppressor and an antiviral host factor, as a suppressor of ERV expression. IRF-1 decreased expression of a specific mouse ERV in vitro and in vivo. IRF-3, but not IRF-7, also decreased expression of distinct ERV families, suggesting that suppression of ERVs is a relevant biological function of the IRF family. Given the emerging appreciation of the physiological relevance of ERV expression in cancer, IRF-1-mediated suppression of specific ERVs may contribute to the overall tumor suppressor activity of this host factor.


Assuntos
Retrovirus Endógenos/genética , Regulação Viral da Expressão Gênica , Fator Regulador 1 de Interferon/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Células Cultivadas , Retrovirus Endógenos/classificação , Fator Regulador 1 de Interferon/genética , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , DNA Polimerase Dirigida por RNA/genética , DNA Polimerase Dirigida por RNA/metabolismo , Proteínas Supressoras de Tumor/genética
15.
mBio ; 9(4)2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30018108

RESUMO

Gammaherpesviruses are oncogenic pathogens that persist in ~95% of the adult population. Cellular metabolic pathways have emerged as important regulators of many viral infections, including infections by gammaherpesviruses that require several lipid synthetic pathways for optimal replication. Liver X receptors (LXRs) are transcription factors that are critical regulators of cellular fatty acid and cholesterol synthesis pathways. Not surprisingly, LXRs are attractive therapeutic targets in cardiovascular disease. Here we describe an antiviral role for LXRs in the context of gammaherpesvirus infection of primary macrophages. We show that type I interferon increased LXR expression following infection. Surprisingly, there was not a corresponding induction of LXR target genes. Rather, LXRs suppressed the expression of target genes, leading to decreased fatty acid and cholesterol synthesis, two metabolic pathways that support gammaherpesvirus replication. This report defines LXR-mediated restriction of cholesterol and lipid synthesis as an intrinsic metabolic mechanism to restrict viral replication in innate immune cells.IMPORTANCE Fatty acid and cholesterol synthesis pathways of the host play important roles in diverse biological systems. Importantly, these two metabolic pathways are also usurped by a number of viruses to facilitate viral replication. In this report, we show that suppression of these pathways by liver X receptors in primary macrophages creates an intrinsic antiviral state that attenuates gammaherpesvirus replication by limiting viral access to the two metabolic pathways.


Assuntos
Antivirais/metabolismo , Colesterol/metabolismo , Ácidos Graxos/metabolismo , Gammaherpesvirinae/fisiologia , Interações Hospedeiro-Patógeno , Receptores X do Fígado/metabolismo , Replicação Viral , Animais , Antivirais/agonistas , Vias Biossintéticas/genética , Células Cultivadas , DNA Viral/metabolismo , Expressão Gênica/efeitos dos fármacos , Interferon Tipo I/deficiência , Interferon Tipo I/farmacologia , Receptores X do Fígado/agonistas , Receptores X do Fígado/deficiência , Receptores X do Fígado/genética , Macrófagos/metabolismo , Macrófagos/virologia , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA