Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioinformatics ; 34(16): 2701-2707, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29554289

RESUMO

Motivation: The three-dimensional organization of chromatin plays a critical role in gene regulation and disease. High-throughput chromosome conformation capture experiments such as Hi-C are used to obtain genome-wide maps of three-dimensional chromatin contacts. However, robust estimation of data quality and systematic comparison of these contact maps is challenging due to the multi-scale, hierarchical structure of chromatin contacts and the resulting properties of experimental noise in the data. Measuring concordance of contact maps is important for assessing reproducibility of replicate experiments and for modeling variation between different cellular contexts. Results: We introduce a concordance measure called DIfferences between Smoothed COntact maps (GenomeDISCO) for assessing the similarity of a pair of contact maps obtained from chromosome conformation capture experiments. The key idea is to smooth contact maps using random walks on the contact map graph, before estimating concordance. We use simulated datasets to benchmark GenomeDISCO's sensitivity to different types of noise that affect chromatin contact maps. When applied to a large collection of Hi-C datasets, GenomeDISCO accurately distinguishes biological replicates from samples obtained from different cell types. GenomeDISCO also generalizes to other chromosome conformation capture assays, such as HiChIP. Availability and implementation: Software implementing GenomeDISCO is available at https://github.com/kundajelab/genomedisco. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Cromatina/metabolismo , Biologia Computacional/métodos , Software , Linhagem Celular , Cromatina/ultraestrutura , Humanos , Conformação Molecular , Reprodutibilidade dos Testes
2.
J Phys Chem B ; 118(38): 11028-36, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25155114

RESUMO

The genetic material in living cells is organized into complex structures in which DNA is subjected to substantial contortions. Here we investigate the difference in structure, dynamics, and flexibility between two topological states of a short (107 base pair) DNA sequence in a linear form and a covalently closed, tightly curved circular DNA form. By employing a combination of all-atom molecular dynamics (MD) simulations and elastic rod modeling of DNA, which allows capturing microscopic details while monitoring the global dynamics, we demonstrate that in the highly curved regime the microscopic flexibility of the DNA drastically increases due to the local mobility of the duplex. By analyzing vibrational entropy and Lipari-Szabo NMR order parameters from the simulation data, we propose a novel model for the thermodynamic stability of high-curvature DNA states based on vibrational untightening of the duplex. This novel view of DNA bending provides a fundamental explanation that bridges the gap between classical models of DNA and experimental studies on DNA cyclization, which so far have been in substantial disagreement.


Assuntos
DNA/química , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico
3.
Biophys J ; 104(9): 2058-67, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23663849

RESUMO

In the bacteriophage ϕ29, DNA is packed into a preassembled capsid from which it ejects under high pressure. A recent cryo-EM reconstruction of ϕ29 revealed a compact toroidal DNA structure (30-40 basepairs) lodged within the exit cavity formed by the connector-lower collar protein complex. Using multiscale models, we compute a detailed structural ensemble of intriguing DNA toroids of various lengths, all highly compatible with experimental observations. In particular, coarse-grained (elastic rod) and atomistic (molecular dynamics) models predict the formation of DNA toroids under significant compression, a largely unexplored state of DNA. Model predictions confirm that a biologically attainable compressive force of 25 pN sustains the toroid and yields DNA electron density maps highly consistent with the experimental reconstruction. The subsequent simulation of dynamic toroid ejection reveals large reactions on the connector that may signal genome release.


Assuntos
Fagos Bacilares/química , DNA Viral/química , Simulação de Dinâmica Molecular , Sequência de Bases , Dados de Sequência Molecular , Conformação de Ácido Nucleico
4.
Biophys J ; 100(8): 2016-23, 2011 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-21504738

RESUMO

In this study, we report what we believe to be the first multiscale simulation of the dynamic relaxation of DNA supercoils by human topoisomerase IB (topo IB). We leverage our previous molecular dynamics calculations of the free energy landscape describing the interaction between a short DNA fragment and topo IB. Herein, this landscape is used to prescribe boundary conditions for a computational, elastodynamic continuum rod model of a long length of supercoiled DNA. The rod model, which accounts for the nonlinear bending, twisting, and electrostatic interaction of the (negatively charged) DNA backbone, is extended to include the hydrodynamic drag induced by the surrounding physiological buffer. Simulations for a 200-bp-long DNA supercoil in complex with topo IB reveal a relaxation timescale of ∼0.1-1.0 µs. The relaxation follows a sequence of cascading reductions in the supercoil linking number (Lk), twist (Tw), and writhe (Wr) that follow companion cascading reductions in the supercoil elastic and electrostatic energies. The novel (to our knowledge) multiscale modeling method may enable simulations of the entire experimental setup that measures DNA supercoiling and relaxation via single molecule magnetic trapping.


Assuntos
DNA Topoisomerases Tipo I/metabolismo , DNA Super-Helicoidal/química , DNA Super-Helicoidal/metabolismo , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Biocatálise , Humanos , Torque
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA