Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Pest Manag Sci ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801156

RESUMO

BACKGROUND: Bordeaux mixture is a copper-based fungicide commonly used in vineyards to prevent fungal and bacterial infections in grapevines. However, this fungicide may adversely affect the entomological component, including insect pests. Understanding the impacts of Bordeaux mixture on the vineyard pest Lobesia botrana is an increasing concern in the viticultural production. RESULTS: Bordeaux mixture had detrimental effects on the development and reproductive performance of L. botrana. Several physiological traits were adversely affected by copper-based fungicide exposure, including a decrease in larval survival and a delayed larval development to moth emergence, as well as a reduced reproductive performance through a decrease in female fecundity and fertility and male sperm quality. However, we did not detect any effect of Bordeaux mixture on the measured reproductive behaviors (mating success, pre-mating latency and mating duration). CONCLUSION: Ingestion by larvae of food contaminated with Bordeaux mixture had a negative effect on the reproductive performance of the pest L. botrana, which could affect its population dynamics in vineyards. Although this study highlighted collateral damage of Bordeaux mixture on L. botrana, the potential impact of copper-based fungicides on vineyard diversity, including natural predators is discussed and needs to be taken in consideration in integrated pest management. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

2.
Environ Toxicol Chem ; 42(10): 2201-2214, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37417785

RESUMO

Numerous actions have been undertaken by farmers to attenuate the impact of agricultural activities on aquatic ecosystems. The identification of biomarkers that respond quickly to water quality improvement could facilitate the assessment of adopted alternative practices and help maintain mobilization among stakeholders. We evaluated the potential of the comet assay, a biomarker of genotoxic effects, using a freshwater mussel, Elliptio complanata, as a model animal. The frequency of DNA damage was assessed in hemocytes of mussels collected from a pristine habitat and caged for 8 weeks in the Pot au Beurre River, a tributary of the fluvial Lake St.-Pierre (Quebec, Canada) impacted by agricultural activities. We found that the level of DNA damage naturally induced in mussel hemocytes was low and showed very limited variations over time. Compared with these baseline levels and to laboratory controls, we observed a doubling in DNA alterations in mussels exposed to agricultural runoff in the third branch of the Pot au Beurre River. The genotoxic response was significantly lower in mussels caged in the first branch of the Pot au Beurre River, where longer stretches of shoreline have been restored as buffer strips. Glyphosate, mesotrione, imazethapyr, and metolachlor were the main discriminant pesticides between these two branches. Metolachlor was found in sufficient concentrations to induce DNA damage, but it is more likely that the observed genotoxicity was the result of a "cocktail effect," that is, the cumulative contribution of coexisting genotoxicants including the above-mentioned herbicides and ingredients in their formulation. Our findings suggest that the comet assay is a sensitive tool for the early detection of changes in water toxicity following the adoption of agricultural beneficial practices. Environ Toxicol Chem 2023;42:2201-2214. © 2023 Crown copyright and The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. This article is published with the permission of the Controller of HMSO and the King's Printer for Scotland.


Assuntos
Bivalves , Poluentes Químicos da Água , Animais , Ensaio Cometa , Monitoramento Ambiental , Ecossistema , Melhoria de Qualidade , Poluentes Químicos da Água/análise , Biomarcadores
3.
Sci Total Environ ; 884: 163811, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37121330

RESUMO

Understanding the environmental conditions and taxa that promote the occurrence of cyanobacterial toxins is imperative for effective management of lake ecosystems. Herein, we modeled total microcystin presence and concentrations with a broad suite of environmental predictors and cyanobacteria community data collected across 440 Canadian lakes using standardized methods. We also conducted a focused analysis targeting 14 microcystin congeners across 190 lakes, to examine how abiotic and biotic factors influence their relative proportions. Microcystins were detected in 30 % of lakes, with the highest total concentrations occurring in the most eutrophic lakes located in ecozones of central Canada. The two most commonly detected congeners were MC-LR (61 % of lakes) and MC-LA (37 % of lakes), while 11 others were detected more sporadically across waterbodies. Congener diversity peaked in central Canada where cyanobacteria biomass was highest. Using a zero-altered hurdle model, the probability of detecting microcystin was best explained by increasing Microcystis biomass, Daphnia and cyclopoid biomass, soluble reactive phosphorus, pH and wind. Microcystin concentrations increased with the biomass of Microcystis and other less dominant cyanobacteria taxa, as well as total phosphorus, cyclopoid copepod biomass, dissolved inorganic carbon and water temperature. Collectively, these models accounted for 34 % and 70 % of the variability, respectively. Based on a multiple factor analysis of microcystin congeners, cyanobacteria community data, environmental and zooplankton data, we found that the relative abundance of most congeners varied according to trophic state and were related to a combination of cyanobacteria genera biomasses and environmental variables.


Assuntos
Cianobactérias , Microcystis , Microcistinas/análise , Lagos/microbiologia , Ecossistema , Canadá , Monitoramento Ambiental
4.
Ecotoxicol Environ Saf ; 208: 111588, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396111

RESUMO

Rare earth elements (REEs) have been recently identified as emergent contaminants because of their numerous and increasing applications in technology. The impact of REEs on downstream ecosystems, notably aquatic organisms, is of particular concern, but has to date been largely overlooked. The purpose of this study was thus to evaluate the toxicity of lanthanide metals, lutetium (Lu) and dysprosium (Dy) in rainbow trout after 96 h of exposure. The lethal concentration (LC50) was determined and the expression of 14 genes involved in different pathways such as oxidative stress, xenobiotic detoxification, mitochondrial respiration, DNA repair, protein folding and turnover, inflammation, calcium binding and ammonia metabolism were quantified in surviving fish. In parallel, lipid peroxidation (LPO), DNA damage (DSB), metallothionein level (MT) and cyclooxygenase activity (COX) were examined. The acute 96 h-LC50 data revealed that Lu was more toxic than Dy (1.9 and 11.0 mg/L, respectively) and was able to affect all investigated pathways by changing the expression of the studied genes, to the exception of superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST). It also induced a decrease in DNA repair at concentrations 29 times below the LC50. This suggests that Lu could trigger a general stress to disrupt the cell homeostasis leading to genotoxicity without promoting oxidative stress. However, Dy induced modulation in the expression of genes involved in the protection against oxidative stress, detoxification, mitochondrial respiration, immunomodulation, protein turnover and an increase in the DNA strand breaks at concentrations 170 times lower than LC50. Changes in mRNA level transcripts could represent an early signal to prevent against toxicity of Dy, which exhibited inflammatory and genotoxic effects. This study thus provides useful knowledge enhancing our understanding of survival strategies developed by rainbow trout to cope with the presence of lanthanides in the environment.


Assuntos
Disprósio/toxicidade , Lutécio/toxicidade , Oncorhynchus mykiss/fisiologia , Poluentes Químicos da Água/toxicidade , Animais , Catalase/metabolismo , Dano ao DNA , Reparo do DNA , Disprósio/metabolismo , Ecossistema , Glutationa Transferase/metabolismo , Dose Letal Mediana , Peroxidação de Lipídeos/efeitos dos fármacos , Lutécio/metabolismo , Metalotioneína/metabolismo , Metais Terras Raras , Oncorhynchus mykiss/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/metabolismo
5.
Trends Microbiol ; 29(2): 171-181, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32622559

RESUMO

In this review we provide an overview of current challenges and advances in bacteriophage research within the growing field of viromics. In particular, we discuss, from a human virome study perspective, the current and emerging technologies available, their limitations in terms of de novo discoveries, and possible solutions to overcome present experimental and computational biases associated with low abundance of viral DNA or RNA. We summarize recent breakthroughs in metagenomics assembling tools and single-cell analysis, which have the potential to increase our understanding of phage biology, diversity, and interactions with both the microbial community and the human body. We expect that these recent and future advances in the field of viromics will have a strong impact on how we develop phage-based therapeutic approaches.


Assuntos
Bacteriófagos/genética , Metagenômica/métodos , Viroma , Vírus/genética , Bacteriófagos/classificação , Bacteriófagos/isolamento & purificação , Genoma Viral , Humanos , Metagenômica/tendências , Vírus/classificação , Vírus/isolamento & purificação
6.
Environ Toxicol Chem ; 39(12): 2462-2474, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33025637

RESUMO

Mercury is found in Arctic marine mammals that are important in the diet of northern Indigenous peoples. The objectives of the present long-term study, spanning a 45-yr period, were to 1) investigate the temporal trends of total mercury (THg; muscle and liver) and selenium (Se; liver) in ringed seals (Pusa hispida) from different regions of the Canadian Arctic; and 2) examine possible relationships with age, diet, and climate parameters such as air temperature, precipitation, climatic indices, and ice-coverage. Ringed seals were collected by hunters in northern communities in the Beaufort Sea, Central Arctic, Eastern Baffin Island, Hudson Bay, and Ungava/Nunatsiavut regions (Canada) between 1972 and 2017. Mercury levels did not change through time in seal liver, but THg levels in muscle decreased in seals from Hudson Bay (-0.91%/yr) and Ungava/Nunatsiavut (-1.30%/yr). Carbon stable isotope values in seal muscle decreased significantly through time in 4 regions. Selenium-to-THg ratios were found to be >1 for all years and regions. Variation partitioning analyses across regions indicated that THg trends in seals were mostly explained by age (7.3-21.7%), climate parameters (3.5-12.5%), and diet (up to 9%); climate indices (i.e., Arctic and North Atlantic Oscillations, Pacific/North American pattern) explained the majority of the climate portion. The THg levels had a positive relationship with Arctic Oscillation for multiple regions. Associations of THg with air temperature, total precipitation, and sea-ice coverage, as well as with North Atlantic Oscillation and Pacific/North American pattern were found to vary with tissue type and geographical area. Environ Toxicol Chem 2020;39:2462-2474. © 2020 Her Majesty the Queen in Right of Canada. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. Reproduced with the permission of the Minister of Fisheries and Oceans Canada.


Assuntos
Clima , Monitoramento Ambiental , Mercúrio/análise , Focas Verdadeiras/metabolismo , Ar , Animais , Regiões Árticas , Canadá , Feminino , Geografia , Camada de Gelo , Fígado/metabolismo , Masculino , Músculos/metabolismo , Chuva , Selênio/metabolismo , Temperatura , Fatores de Tempo
7.
Harmful Algae ; 97: 101859, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32732053

RESUMO

There is growing evidence that cyanobacterial blooms are becoming more common in different parts of the world; within this context, predictive cyanobacteria models have an essential role in lake management. Several models have been successfully used in temperate systems to describe the main drivers of cyanobacterial blooms, but relatively less work has been conducted in the Tropics. We analyzed data from six Brazilian reservoirs and from five Canadian lakes using a combination of regression tree analyses and variation partitioning to evaluate the similarities and differences between regions. Our results, together with a synthesis of the literature from different latitudes, showed that trophic state (i.e. nutrients), climatic variables (e.g., temperature and/or precipitation) and hydrodynamic regimes (i.e. water residence time) are significant drivers of cyanobacteria biomass over several scales. Nutrients came out as the primary predictor in both regions, followed by climate, but when all systems were pooled together, water residence time came out as most important. The consistency in variables identified between regions suggests that these drivers are widely important and cyanobacteria responded quite similarly in different geographical settings and waterbody types (i.e. lakes or reservoirs). However, more work is needed to identify key thresholds across latitudinal gradients. Taken together, these results suggest that multi-region syntheses can help identify drivers that predict broad-scale patterns of cyanobacteria biomass.


Assuntos
Cianobactérias , Eutrofização , Biomassa , Brasil , Canadá
8.
Cell Host Microbe ; 27(2): 199-212.e5, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32053789

RESUMO

Stunting, a severe and multigenerational growth impairment, globally affects 22% of children under the age of 5 years. Stunted children have altered gut bacterial communities with higher proportions of Proteobacteria, a phylum with several known human pathogens. Despite the links between an altered gut microbiota and stunting, the role of bacteriophages, highly abundant bacterial viruses, is unknown. Here, we describe the gut bacterial and bacteriophage communities of Bangladeshi stunted children younger than 38 months. We show that these children harbor distinct gut bacteriophages relative to their non-stunted counterparts. In vitro, these gut bacteriophages are infectious and can regulate bacterial abundance and composition in an age-specific manner, highlighting their possible role in the pathophysiology of child stunting. Specifically, Proteobacteria from non-stunted children increased in the presence of phages from younger stunted children, suggesting that phages could contribute to the bacterial community changes observed in child stunting.


Assuntos
Bacteriófagos/isolamento & purificação , Microbioma Gastrointestinal , Transtornos do Crescimento/microbiologia , Transtornos do Crescimento/virologia , Fatores Etários , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/virologia , Bacteriófagos/classificação , Bacteriófagos/genética , Pré-Escolar , Feminino , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Genes Bacterianos , Genes Virais , Interações entre Hospedeiro e Microrganismos , Humanos , Lactente , Masculino , Metagenômica , Proteobactérias/classificação , Proteobactérias/genética , Proteobactérias/isolamento & purificação , Proteobactérias/virologia , RNA Ribossômico 16S
9.
Environ Microbiol ; 22(4): 1238-1250, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31997531

RESUMO

Understanding how ecological traits have changed over evolutionary time is a fundamental question in biology. Specifically, the extent to which more closely related organisms share similar ecological preferences due to phylogenetic conservation - or if they are forced apart by competition - is still debated. Here, we explored the co-occurrence patterns of freshwater cyanobacteria at the sub-genus level to investigate whether more closely related taxa share more similar niches and to what extent these niches were defined by abiotic or biotic variables. We used deep 16S rRNA gene amplicon sequencing and measured several abiotic environmental parameters (nutrients, temperature, etc.) in water samples collected over time and space in Furnas Reservoir, Brazil. We found that relatively more closely related Synechococcus (in the continuous range of 93%-100% nucleotide identity in 16S) had an increased tendency to co-occur with one another (i.e. had similar realized niches). This tendency could not be easily explained by shared preferences for measured abiotic niche dimensions. Thus, commonly measured abiotic parameters might not be sufficient to characterize, nor to predict community assembly or dynamics. Rather, co-occurrence between Synechococcus and the surrounding community (whether or not they represent true biological interactions) may be a more sensitive measure of realized niches. Overall, our results suggest that realized niches are phylogenetically conserved, at least at the sub-genus level and at the resolution of the 16S marker. Determining how these results generalize to other genera and at finer genetic resolution merits further investigation.


Assuntos
Evolução Biológica , Synechococcus/fisiologia , Brasil , Ecossistema , Água Doce/microbiologia , Filogenia , RNA Ribossômico 16S , Synechococcus/classificação , Synechococcus/genética
10.
Toxins (Basel) ; 11(11)2019 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-31717743

RESUMO

Cyanobacterial blooms increasingly impair inland waters, with the potential for a concurrent increase in cyanotoxins that have been linked to animal and human mortalities. Microcystins (MCs) are among the most commonly detected cyanotoxins, but little is known about the distribution of different MC congeners despite large differences in their biomagnification, persistence, and toxicity. Using raw-water intake data from sites around the Great Lakes basin, we applied multivariate canonical analyses and regression tree analyses to identify how different congeners (MC-LA, -LR, -RR, and -YR) varied with changes in meteorological and nutrient conditions over time (10 years) and space (longitude range: 77°2'60 to 94°29'23 W). We found that MC-LR was associated with strong winds, warm temperatures, and nutrient-rich conditions, whereas the equally toxic yet less commonly studied MC-LA tended to dominate under intermediate winds, wetter, and nutrient-poor conditions. A global synthesis of lake data in the peer-reviewed literature showed that the composition of MC congeners differs among regions, with MC-LA more commonly reported in North America than Europe. Global patterns of MC congeners tended to vary with lake nutrient conditions and lake morphometry. Ultimately, knowledge of the environmental factors leading to the formation of different MC congeners in freshwaters is necessary to assess the duration and degree of toxin exposure under future global change.


Assuntos
Toxinas Bacterianas/análise , Clima , Monitoramento Ambiental/métodos , Lagos/química , Lagos/microbiologia , Toxinas Marinhas/análise , Microcistinas/análise , Toxinas Bacterianas/toxicidade , Europa (Continente) , Toxinas Marinhas/toxicidade , Microcistinas/toxicidade , Compostos de Nitrogênio/análise , Estados Unidos
11.
Glob Chang Biol ; 24(9): 4009-4022, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29749028

RESUMO

Freshwater ecosystems are threatened by multiple anthropogenic stressors acting over different spatial and temporal scales, resulting in toxic algal blooms, reduced water quality and hypoxia. However, while catchment characteristics act as a 'filter' modifying lake response to disturbance, little is known of the relative importance of different drivers and possible differentiation in the response of upland remote lakes in comparison to lowland, impacted lakes. Moreover, many studies have focussed on single lakes rather than looking at responses across a set of individual, yet connected lake basins. Here we used sedimentary algal pigments as an index of changes in primary producer assemblages over the last ~200 years in a northern temperate watershed consisting of 11 upland and lowland lakes within the Lake District, United Kingdom, to test our hypotheses about landscape drivers. Specifically, we expected that the magnitude of change in phototrophic assemblages would be greatest in lowland rather than upland lakes due to more intensive human activities in the watersheds of the former (agriculture, urbanization). Regional parameters, such as climate dynamics, would be the predominant factors regulating lake primary producers in remote upland lakes and thus, synchronize the dynamic of primary producer assemblages in these basins. We found broad support for the hypotheses pertaining to lowland sites as wastewater treatment was the main predictor of changes to primary producer assemblages in lowland lakes. In contrast, upland headwaters responded weakly to variation in atmospheric temperature, and dynamics in primary producers across upland lakes were asynchronous. Collectively, these findings show that nutrient inputs from point sources overwhelm climatic controls of algae and nuisance cyanobacteria, but highlights that large-scale stressors do not always initiate coherent regional lake response. Furthermore, a lake's position in its landscape, its connectivity and proximity to point nutrients are important determinants of changes in production and composition of phototrophic assemblages.


Assuntos
Eutrofização , Lagos/química , Microalgas/fisiologia , Águas Residuárias/análise , Poluição da Água/análise , Qualidade da Água , Cianobactérias/fisiologia , Inglaterra
12.
Front Microbiol ; 9: 438, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29636727

RESUMO

Bacterial communities are composed of distinct groups of potentially interacting lineages, each thought to occupy a distinct ecological niche. It remains unclear, however, how quickly niche preference evolves and whether more closely related lineages are more likely to share ecological niches. We addressed these questions by following the dynamics of two bloom-forming cyanobacterial genera over an 8-year time-course in Lake Champlain, Canada, using 16S amplicon sequencing and measurements of several environmental parameters. The two genera, Microcystis (M) and Dolichospermum (D), are frequently observed simultaneously during bloom events and thus have partially overlapping niches. However, the extent of their niche overlap is debated, and it is also unclear to what extent niche partitioning occurs among strains within each genus. To identify strains within each genus, we applied minimum entropy decomposition (MED) to 16S rRNA gene sequences. We confirmed that at a genus level, M and D have different preferences for nitrogen and phosphorus concentrations. Within each genus, we also identified strains differentially associated with temperature, precipitation, and concentrations of nutrients and toxins. In general, niche similarity between strains (as measured by co-occurrence over time) declined with genetic distance. This pattern is consistent with habitat filtering - in which closely related taxa are ecologically similar, and therefore tend to co-occur under similar environmental conditions. In contrast with this general pattern, similarity in certain niche dimensions (notably particulate nitrogen and phosphorus) did not decline linearly with genetic distance, and instead showed a complex polynomial relationship. This observation suggests the importance of processes other than habitat filtering - such as competition between closely related taxa, or convergent trait evolution in distantly related taxa - in shaping particular traits in microbial communities.

13.
R Soc Open Sci ; 4(7): 170215, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28791149

RESUMO

The Northwest Atlantic cod stocks collapsed in the early 1990s and have yet to recover, despite the subsequent establishment of a continuing fishing moratorium. Efforts to understand the collapse and lack of recovery have so far focused mainly on the dynamics of commercially harvested species. Here, we use data from a 33-year scientific trawl survey to determine to which degree the signatures of the collapse and recovery of the cod are apparent in the spatial and temporal dynamics of the broader groundfish community. Over this 33-year period, the groundfish community experienced four phases of change: (i) a period of rapid, synchronous biomass collapse in most species, (ii) followed by a regime shift in community composition with a concomitant loss of functional diversity, (iii) followed in turn by periods of slow compositional recovery, and (iv) slow biomass growth. Our results demonstrate how a community-wide perspective can reveal new aspects of the dynamics of collapse and recovery unavailable from the analysis of individual species or a combination of a small number of species. Overall, we found evidence that such community-level signals should be useful for designing more effective management strategies to ensure the persistence of exploited marine ecosystems.

14.
Ecol Lett ; 18(4): 375-84, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25728551

RESUMO

Increases in atmospheric temperature and nutrients from land are thought to be promoting the expansion of harmful cyanobacteria in lakes worldwide, yet to date there has been no quantitative synthesis of long-term trends. To test whether cyanobacteria have increased in abundance over the past ~ 200 years and evaluate the relative influence of potential causal mechanisms, we synthesised 108 highly resolved sedimentary time series and 18 decadal-scale monitoring records from north temperate-subarctic lakes. We demonstrate that: (1) cyanobacteria have increased significantly since c. 1800 ce, (2) they have increased disproportionately relative to other phytoplankton, and (3) cyanobacteria increased more rapidly post c. 1945 ce. Variation among lakes in the rates of increase was explained best by nutrient concentration (phosphorus and nitrogen), and temperature was of secondary importance. Although cyanobacterial biomass has declined in some managed lakes with reduced nutrient influx, the larger spatio-temporal scale of sedimentary records show continued increases in cyanobacteria throughout the north temperate-subarctic regions.


Assuntos
Mudança Climática , Cianobactérias/crescimento & desenvolvimento , Lagos/microbiologia , Temperatura , Cianobactérias/classificação , Água Doce/química , Água Doce/microbiologia , Sedimentos Geológicos/microbiologia , Lagos/química , Modelos Teóricos , Nitrogênio/análise , Fósforo/análise , Fatores de Tempo , Xantofilas/análise
15.
PLoS One ; 9(1): e86561, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24497954

RESUMO

African tropical lakes provide vital ecosystem services including food and water to some of the fastest growing human populations, yet they are among the most understudied ecosystems in the world. The consequences of climate change and other stressors on the tropical lakes of Africa have been informed by long-term analyses, but these studies have largely focused on the massive Great Rift Valley lakes. Our objective was to evaluate how recent climate change has altered the functioning and services of smaller tropical lakes, which are far more abundant on the landscape. Based on a paired analysis of 20 years of high-resolution water column data and a paleolimnological record from a small crater lake in western Uganda, we present evidence that even a modest warming of the air (∼0.9°C increase over 20 years) and changes in the timing and intensity of rainfall can have significant consequences on the dynamics of this common tropical lake type. For example, we observed a significant nonlinear increase (R(2) adj  = 0.23, e.d.f. = 7, p<0.0001) in thermal stability over the past 20 years. This resulted in the expansion of anoxic waters and consequent deterioration of fish habitat and appears to have abated primary production; processes that may impair ecosystem services for a vulnerable human population. This study on a system representative of small tropical crater lakes highlights the far-reaching effects of global climatic change on tropical waters. Increased research efforts into tropical aquatic ecosystem health and the development of sound management practices are necessary in order to strengthen adaptive capabilities in tropical regions.


Assuntos
Mudança Climática , Ecossistema , Lagos , Clima Tropical , Animais , Biomassa , Biota/fisiologia , Água Doce/análise , Água Doce/química , Geografia , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , Humanos , Concentração de Íons de Hidrogênio , Radioisótopos de Chumbo/análise , Microalgas/crescimento & desenvolvimento , Oxigênio/metabolismo , Dinâmica Populacional , Temperatura , Fatores de Tempo , Uganda , beta Caroteno/metabolismo
16.
PLoS One ; 6(1): e15913, 2011 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-21264341

RESUMO

BACKGROUND: A hallmark of the latter half of the 20(th) century is the widespread, rapid intensification of a variety of anthropogenically-driven environmental changes--a "Great Acceleration." While there is evidence of a Great Acceleration in a variety of factors known to be linked to water quality degradation, such as conversion of land to agriculture and intensification of fertilizer use, it is not known whether there has been a similar acceleration of freshwater eutrophication. METHODOLOGY/PRINCIPAL FINDINGS: Using quantitative reconstructions of diatom-inferred total phosphorus (DI-TP) as a proxy for lake trophic state, we synthesized results from 67 paleolimnological studies from across Europe and North America to evaluate whether most lakes showed a pattern of eutrophication with time and whether this trend was accelerated after 1945 CE, indicative of a Great Acceleration. We found that European lakes have experienced widespread increases in DI-TP over the 20(th) century and that 33% of these lakes show patterns consistent with a post-1945 CE Great Acceleration. In North America, the proportion of lakes that increased in DI-TP over time is much lower and only 9% exhibited a Great Acceleration of eutrophication. CONCLUSIONS/SIGNIFICANCE: The longer and more widespread history of anthropogenic influence in Europe, the leading cause for the relatively pervasive freshwater eutrophication, provides an important cautionary tale; our current path of intensive agriculture around the world may lead to an acceleration of eutrophication in downstream lakes that could take centuries from which to recover.


Assuntos
Agricultura , Monitoramento Ambiental , Eutrofização , Meio Ambiente , Europa (Continente) , Água Doce , América do Norte , Fósforo/análise , Poluição da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA