Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Int J Mol Sci ; 24(20)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37894809

RESUMO

miRNAs represent ubiquitous regulators of gene expression and play an important and pivotal regulatory role in viral disease pathogenesis and virus-host interactions. Although previous studies have provided basic data for understanding the role of miRNAs in the molecular mechanisms of viral infection in birds, the role of miRNAs in the regulation of host responses to chicken astrovirus (CAstV) infection in chickens is not yet understood. In our study, we applied next-generation sequencing to profile miRNA expression in CAstV-infected chickens and to decipher miRNA-targeted specific signaling pathways engaged in potentially vital virus-infection biological processes. Among the 1354 detected miRNAs, we identified 58 mature miRNAs that were significantly differentially expressed in infected birds. Target prediction resulted in 4741 target genes. GO and KEGG pathway enrichment analyses showed that the target genes were mainly involved in the regulation of cellular processes and immune responses.


Assuntos
Avastrovirus , MicroRNAs , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Galinhas/metabolismo , Avastrovirus/genética , Avastrovirus/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Interações entre Hospedeiro e Microrganismos
2.
Euro Surveill ; 28(31)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37535474

RESUMO

BackgroundOver a 3-week period in late June/early July 2023, Poland experienced an outbreak caused by highly pathogenic avian influenza (HPAI) A(H5N1) virus in cats.AimThis study aimed to characterise the identified virus and investigate possible sources of infection.MethodsWe performed next generation sequencing and phylogenetic analysis of detected viruses in cats.ResultsWe sampled 46 cats, and 25 tested positive for avian influenza virus. The identified viruses belong to clade 2.3.4.4b, genotype CH (H5N1 A/Eurasian wigeon/Netherlands/3/2022-like). In Poland, this genotype was responsible for several poultry outbreaks between December 2022 and January 2023 and has been identified only sporadically since February 2023. Viruses from cats were very similar to each other, indicating one common source of infection. In addition, the most closely related virus was detected in a dead white stork in early June. Influenza A(H5N1) viruses from cats possessed two amino acid substitutions in the PB2 protein (526R and 627K) which are two molecular markers of virus adaptation in mammals. The virus detected in the white stork presented one of those mutations (627K), which suggests that the virus that had spilled over to cats was already partially adapted to mammalian species.ConclusionThe scale of HPAI H5N1 virus infection in cats in Poland is worrying. One of the possible sources seems to be poultry meat, but to date no such meat has been identified with certainty. Surveillance should be stepped up on poultry, but also on certain species of farmed mammals kept close to infected poultry farms.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Influenza Humana , Gatos , Animais , Humanos , Influenza Humana/epidemiologia , Influenza Aviária/epidemiologia , Virus da Influenza A Subtipo H5N1/genética , Filogenia , Polônia/epidemiologia , Aves , Surtos de Doenças/veterinária , Aves Domésticas , Vírus da Influenza A/genética , Mamíferos
3.
Pathogens ; 12(2)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36839489

RESUMO

In this study, we investigated the clinical response, viral shedding, transmissibility, pathologic lesions, and tropism of HPAIV Gs/Gd H5N8 subtype (clade 2.3.4.4b), following experimental infection of three groups of captive mallards (Anas platyrhynchos): (i) fully susceptible, (ii) pre-exposed to low pathogenic avian influenza virus (LPAIV) H5N1 subtype, and (iii) pre-exposed to LPAIV H3N8 subtype. Infection of naïve mallards with HPAIV H5N8 resulted in ~60% mortality, neurological signs, abundant shedding, and transmission to contact ducks, who also became sick and died. High amounts of viral RNA were found in all collected organs, with the highest RNA load recorded in the brain. The IHC examinations performed on tissues collected at 4 and 14 days post-infection (dpi) revealed tropism to nervous tissue, myocardium, respiratory epithelium, and hepatic and pancreatic cells. The mallards pre-exposed to LPAIV H5N1 and challenged with HPAIV H5N8 were asymptomatic and showed a significant reduction of viral RNA shedding, yet still sufficient to cause infection (but no disease) in the contact ducks. The AIV antigen was not detected in organs at 4 and 14 dpi, and microscopic lesions were mild and scarce. Similarly, mallards previously inoculated with LPAIV H3N8 remained healthy after challenge with HPAIV H5N8, but viral RNA was detected in large quantities in swabs and organs, particularly in the early phase of infection. However, in contrast to mallards from group I, the IHC staining yielded negative results at the selected timepoints. The virus was transmitted to contact birds, which remained symptomless but demonstrated low levels of viral RNA shedding and mild- to moderate tissue damage despite negative IHC staining. The results indicate that naïve mallards are highly susceptible to HPAIV H5N8 clade 2.3.4.4b and that homo- and heterosubtypic immunity to LPAIV can mitigate the clinical outcomes of infection.

4.
Vet Res ; 53(1): 108, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36517883

RESUMO

To improve understanding of the pathobiology of highly pathogenic avian influenza virus (HPAIV) infections in wild birds, pathogenicity and transmissibility of HPAIV H5N8 subtype clade 2.3.4.4b was evaluated in ~ 8-week-old herring gulls (Larus argentatus) divided into 3 groups: naïve birds (group A), birds previously exposed to low pathogenic avian influenza virus (LPAIV) H5N1 (group B) and LPAIV H13N6 (group C). The HPAIV H5N8 virus was highly virulent for naïve gulls, that showed early morbidity, high mortality, a broad spectrum of clinical signs, including violent neurological disorders, systemic distribution of the virus in organs accompanied by high level of shedding and transmission to contact birds. Pre-exposure to homologous and heterologous LPAIV subtypes conferred only partial protection: we observed increased survival rate (statistically significant only in group B), nervous signs, pantropic distribution of virus in organs, shedding (significantly reduced in gulls of group C in the early phase of disease and asymptomatic shedding in the late phase), transmission to contact gulls (more pronounced in group B) and near-complete seroconversion in survivors. Histopathological and immunohistochemical results indicate virus tropism for the neural, respiratory and myocardial tissues. In conclusion, we demonstrate that HPAIV H5N8 clade 2.3.4.4b is highly virulent and lethal for fully susceptible herring gulls and that pre-exposure to homo- and heterosubtypic LPAIV only partially modulates the disease outcome.


Assuntos
Charadriiformes , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A Subtipo H5N8 , Vírus da Influenza A , Influenza Aviária , Animais , Virulência , Eliminação de Partículas Virais
5.
J Vet Res ; 66(1): 1-7, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35582478

RESUMO

Introduction: Highly pathogenic avian influenza (HPAI) outbreaks caused by the Gs/Gd lineage of H5Nx viruses occur in Poland with increased frequency. The article provides an update on the HPAI situation in the 2020/2021 season and studies the possible factors that caused the exceptionally fast spread of the virus. Material and Methods: Samples from poultry and wild birds delivered for HPAI diagnosis were tested by real-time RT-PCR and a representative number of detected viruses were submitted for partial or full-genome characterisation. Information yielded by veterinary inspection was used for descriptive analysis of the epidemiological situation. Results: The scale of the epidemic in the 2020/2021 season was unprecedented in terms of duration (November 2020-August 2021), number of outbreaks in poultry (n = 357), wild bird events (n = 92) and total number of affected domestic birds (approximately ~14 million). The major drivers of the virus spread were the harsh winter conditions in February 2020 followed by the introduction of the virus to high-density poultry areas in March 2021. All tested viruses belonged to H5 clade 2.3.4.4b with significant intra-clade diversity and in some cases clearly distinguished clusters. Conclusion: The HPAI epidemic in 2020/2021 in Poland struck with unprecedented force. The conventional control measures may have limited effectiveness to break the transmission chain in areas with high concentrations of poultry.

6.
Vaccines (Basel) ; 10(3)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35335074

RESUMO

An increasing body of evidence from both academic and clinical studies shows that time-of-day exposure to antigens might significantly alter and modulate the development of adaptive immune responses. Considering the immense impact of the COVID-19 pandemic on global health and the diminished efficacy of vaccination in selected populations, such as older and immunocompromised patients, it is critical to search for the most optimal conditions for mounting immune responses against SARS-CoV-2. Hence, we conducted an observational study on 435 healthy young adults vaccinated with two doses of BNT162b2 (Pfizer-BioNTech) vaccine to determine whether time-of-day of vaccination influences either the magnitude of humoral response or number of adverse drug reactions (ADR) being reported. We found no significant differences between morning and afternoon vaccination in terms of both titers of anti-Spike antibodies and frequency of ADR in the studied population. In addition, our analysis of data on the occurrence of ADR in 1324 subjects demonstrated that the second administration of vaccine in those with previous SARS-CoV-2 infection was associated with lower incidence of ADR. In aggregate, vaccination against COVID-19 with two doses of BNT162b2 mRNA vaccine is presumed to generate an equally efficient anti-Spike humoral response.

7.
Viruses ; 13(12)2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34960643

RESUMO

Astrovirus infections pose a significant problem in the poultry industry, leading to multiple adverse effects such as a decreased egg production, breeding disorders, poor weight gain, and even increased mortality. The commonly observed chicken astrovirus (CAstV) was recently reported to be responsible for the "white chicks syndrome" associated with an increased embryo/chick mortality. CAstV-mediated pathogenesis in chickens occurs due to complex interactions between the infectious pathogen and the immune system. Many aspects of CAstV-chicken interactions remain unclear, and there is no information available regarding possible changes in gene expression in the chicken spleen in response to CAstV infection. We aim to investigate changes in gene expression triggered by CAstV infection. Ten 21-day-old SPF White Leghorn chickens were divided into two groups of five birds each. One group was inoculated with CAstV, and the other used as the negative control. At 4 days post infection, spleen samples were collected and immediately frozen at -70 °C for RNA isolation. We analyzed the isolated RNA, using RNA-seq to generate transcriptional profiles of the chickens' spleens and identify differentially expressed genes (DEGs). The RNA-seq findings were verified by quantitative reverse-transcription PCR (qRT-PCR). A total of 31,959 genes was identified in response to CAstV infection. Eventually, 45 DEGs (p-value < 0.05; log2 fold change > 1) were recognized in the spleen after CAstV infection (26 upregulated DEGs and 19 downregulated DEGs). qRT-PCR performed on four genes (IFIT5, OASL, RASD1, and DDX60) confirmed the RNA-seq results. The most differentially expressed genes encode putative IFN-induced CAstV restriction factors. Most DEGs were associated with the RIG-I-like signaling pathway or more generally with an innate antiviral response (upregulated: BLEC3, CMPK2, IFIT5, OASL, DDX60, and IFI6; downregulated: SPIK5, SELENOP, HSPA2, TMEM158, RASD1, and YWHAB). The study provides a global analysis of host transcriptional changes that occur during CAstV infection in vivo and proves that, in the spleen, CAstV infection in chickens predominantly affects the cell cycle and immune signaling.


Assuntos
Infecções por Astroviridae/imunologia , Avastrovirus/patogenicidade , Galinhas/genética , Interações Hospedeiro-Patógeno , Doenças das Aves Domésticas/imunologia , Transcriptoma , Animais , Infecções por Astroviridae/virologia , Avastrovirus/fisiologia , Embrião de Galinha , Galinhas/imunologia , Galinhas/virologia , Doenças das Aves Domésticas/virologia , RNA-Seq , Transdução de Sinais , Organismos Livres de Patógenos Específicos , Baço/virologia
8.
J Vet Res ; 64(4): 469-476, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33367134

RESUMO

INTRODUCTION: Repeated incursions of highly pathogenic avian influenza virus (HPAIV) H5 subtype of Gs/GD lineage pose a serious threat to poultry worldwide. We provide a detailed analysis of the spatio-temporal spread and genetic characteristics of HPAIV Gs/GD H5N8 from the 2019/20 epidemic in Poland. MATERIAL AND METHODS: Samples from poultry and free-living birds were tested by real-time RT-PCR. Whole genome sequences from 24 (out of 35) outbreaks were generated and genetic relatedness was established. The clinical status of birds and possible pathways of spread were analysed based on the information provided by veterinary inspections combined with the results of phylogenetic studies. RESULTS: Between 31 December 2019 and 31 March 2020, 35 outbreaks in commercial and backyard poultry holdings and 1 case in a wild bird were confirmed in nine provinces of Poland. Most of the outbreaks were detected in meat turkeys and ducks. All characterised viruses were closely related and belonged to a previously unrecognised genotype of HPAIV H5N8 clade 2.3.4.4b. Wild birds and human activity were identified as the major modes of HPAIV spread. CONCLUSION: The unprecedentedly late introduction of the HPAI virus urges for re-evaluation of current risk assessments. Continuous vigilance, strengthening biosecurity and intensifying surveillance in wild birds are needed to better manage the risk of HPAI occurrence in the future.

9.
Vet Res ; 51(1): 108, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859269

RESUMO

Defective interfering particles (DIPs) of influenza virus are generated through incorporation of highly truncated forms of genome segments, mostly those coding polymerase complex proteins (PB2, PB1, PA). Such particles are able to replicate only in the presence of a virus with the complete genome, thus DIPs may alter the infection outcome by suppressing production of standard virus particles, but also by stimulating the immune response. In the present study we compared the clinical outcome, mortality and transmission in chickens and turkeys infected with the same infectious doses of H7N7 low pathogenic avian influenza virus containing different levels of defective gene segments (95/95(DVG-high) and 95/95(DVG-low)). No clinical signs, mortality or transmission were noted in SPF chickens inoculated with neither virus stock. Turkeys infected with 95/95(DVG-high) showed only slight clinical signs with no mortality, and the virus was transmitted only to birds in direct contact. In contrast, more severe disease, mortality and transmission to direct and indirect contact birds was observed in turkeys infected with 95/95(DVG-low). Apathy, lower water and food intake, respiratory system disorders and a total mortality of 60% were noted. Shedding patterns in contact turkeys indicated more efficient within- and between-host spread of the virus than in 95/95(DVG-high) group. Sequencing of virus genomes showed no mutations that could account for the observed differences in pathogenicity. The results suggest that the abundance of DIPs in the inoculum was the factor responsible for the mild course of infection and disrupted virus transmission.


Assuntos
Genoma Viral , Vírus da Influenza A Subtipo H7N7/genética , Vírus da Influenza A Subtipo H7N7/patogenicidade , Influenza Aviária/transmissão , Doenças das Aves Domésticas/transmissão , Perus , Animais , Influenza Aviária/virologia , Doenças das Aves Domésticas/virologia , Virulência
10.
Viruses ; 12(3)2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32188100

RESUMO

Avian influenza virus (AIV) is a highly diverse and widespread poultry pathogen. Itsevolution and adaptation may be affected by multiple host and ecological factors, which are stillpoorly understood. In the present study, a turkey-origin H9N2 AIV was used as a model toinvestigate the within-host diversity of the virus in turkeys, quail and ducks in conjunction with theclinical course, shedding and seroconversion. Ten birds were inoculated oculonasally with a doseof 106 EID50 of the virus and monitored for 14 days. Virus shedding, transmission andseroconversion were evaluated, and swabs collected at selected time-points were characterized indeep sequencing to assess virus diversity. In general, the virus showed low pathogenicity for theexamined bird species, but differences in shedding patterns, seroconversion and clinical outcomewere noted. The highest heterogeneity of the virus population as measured by the number of singlenucleotide polymorphisms and Shannon entropy was found in oropharyngeal swabs from quail,followed by turkeys and ducks. This suggests a strong bottleneck was imposed on the virus duringreplication in ducks, which can be explained by its poor adaptation and stronger selection pressurein waterfowl. The high within-host virus diversity in quail with high level of respiratory sheddingand asymptomatic course of infection may contribute to our understanding of the role of quail asan intermediate host for adaptation of AIV to other species of poultry. In contrast, low viruscomplexity was observed in cloacal swabs, mainly from turkeys, showing that the within-hostdiversity may vary between different replication sites. Consequences of these observations on thevirus evolution and adaptation require further investigation.


Assuntos
Patos/virologia , Vírus da Influenza A Subtipo H9N2/patogenicidade , Influenza Aviária/virologia , Doenças das Aves Domésticas/virologia , Codorniz/virologia , Perus/virologia , Adaptação Biológica , Animais , Biodiversidade , Genes Virais/genética , Vírus da Influenza A Subtipo H9N2/genética , Mutação , Aves Domésticas , Virulência , Eliminação de Partículas Virais
11.
BMC Vet Res ; 15(1): 274, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31370852

RESUMO

BACKGROUND: In Poland, the leader in goose production in Europe, goose parovirus infection, or Derzsy's disease (DD), must be reported to the veterinary administration due to the serious economic and epizootic threat to waterfowl production. Prophylactic treatment for DD includes attenuated live or inactivated vaccines. Moreover, the control of DD includes the monitoring of maternal derived antibody (MDA) levels in the offspring and antibody titers in the parent flock after vaccination. The aim of this study was to develop an ELISA for the detection of goose parvovirus (GPV) antibodies. RESULTS: Two recombinant protein fragments derived from VP3 (viral protein 3) GPV, namely VP3ep6 and VP3ep4-6 with a mass of 20.9 and 32.3 kDa, respectively, were produced using an Escherichia coli expression system. These proteins were purified by one-step nickel-affinity chromatography, which yielded protein preparations with a purity above 95%. These recombinant proteins were useful in the detection of serum anti-GPV antibodies, and this was confirmed by Western blotting. However, recombinant VP3ep4-6 protein showed a greater ability to correctly identify sera from infected geese. In the next stage of the project, a pool of 166 goose sera samples, previously examined by a virus neutralization test (VN), was tested. For further studies, one recombinant protein (VP3ep4-6) was selected for optimization of the test conditions. After optimization, the newly developed ELISA was compared to other serological tests, and demonstrated high sensitivity and specificity. CONCLUSION: In conclusion, the VP3ep4-6 ELISA method described here can be used for the detection of antibodies to GPV in serum.


Assuntos
Anticorpos Antivirais/sangue , Proteínas do Capsídeo/imunologia , Ensaio de Imunoadsorção Enzimática/veterinária , Infecções por Parvoviridae/veterinária , Parvovirinae/imunologia , Doenças das Aves Domésticas/diagnóstico , Animais , Ensaio de Imunoadsorção Enzimática/normas , Infecções por Parvoviridae/sangue , Infecções por Parvoviridae/diagnóstico , Doenças das Aves Domésticas/sangue , Doenças das Aves Domésticas/virologia , Proteínas Recombinantes/imunologia , Sensibilidade e Especificidade
12.
Avian Pathol ; 44(4): 311-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25959267

RESUMO

Goose haemorrhagic polyomavirus (GHPV) is an aetiological agent of haemorrhagic nephritis and enteritis of geese occurring in geese (Anser anser). GHPV may also infect Muscovy ducks (Carina mochata) and mule ducks. Early detection of GHPV is important to isolate the infected birds from the rest of the flock thus limiting infection transmission. The current diagnosis of haemorrhagic nephritis and enteritis of geese is based on virus isolation, histopathological examination, haemagglutination inhibition assay, ELISA and polymerase chain reaction (PCR). Recently, real-time PCR assay was developed which considerably improved detection of GHPV. In spite of many advantages, these methods are still time-consuming and inaccessible for laboratories with limited access to ELISA plate readers or PCR thermocyclers. The aim of our study was to develop loop-mediated isothermal amplification (LAMP) that may be conducted in a water bath. Two pairs of specific primers complementary to VP1 gene of GHPV were designed. The results of GHPV LAMP were recorded under ultraviolet light. Our study showed LAMP was able to specifically amplify VP1 fragment of a GHPV without cross-reactivity with other pathogens of geese and ducks. LAMP detected as little as 1.5 pg of DNA extracted from a GHPV standard strain (150 pg/µl). The optimized LAMP was used to examine 18 field specimens collected from dead and clinically diseased geese and ducks aged from 1 to 12 weeks. The positive signal for GHPV was detected in three out of 18 (16.6%) specimens. These results were reproducible and consistent with those of four real-time PCR. To the best of our knowledge this is the first report on LAMP application for the GHPV detection.


Assuntos
Patos/virologia , Gansos/virologia , Infecções por Polyomavirus/veterinária , Polyomavirus/isolamento & purificação , Doenças das Aves Domésticas/virologia , Infecções Tumorais por Vírus/veterinária , Animais , Enterite/diagnóstico , Enterite/veterinária , Enterite/virologia , Ensaio de Imunoadsorção Enzimática/veterinária , Testes de Inibição da Hemaglutinação/veterinária , Hemorragia/veterinária , Nefrite/diagnóstico , Nefrite/veterinária , Nefrite/virologia , Técnicas de Amplificação de Ácido Nucleico/veterinária , Polyomavirus/genética , Infecções por Polyomavirus/diagnóstico , Infecções por Polyomavirus/virologia , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Reprodutibilidade dos Testes , Infecções Tumorais por Vírus/diagnóstico , Infecções Tumorais por Vírus/virologia
13.
Open Virol J ; 6: 7-11, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22393336

RESUMO

The aim of the foregoing study was the determination of the occurrence of parvovirus in chicken flocks from different regions of Poland during 2002-2011. The material used for this study originated from chickens showing clinical symptoms of stunting and emaciation. For the quick detection of genetic material of the viruses in field samples, real-time PCR was applied. The conducted study implied on the occurrence of parvoviral infections in Poland in approximately 18% of investigated chicken flocks. However, their exact role remains still unknown.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA