Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Cell Biochem Funct ; 42(4): e4028, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38715125

RESUMO

Niemann-Pick disease (NPD) is another type of metabolic disorder that is classified as lysosomal storage diseases (LSDs). The main cause of the disease is mutation in the SMPD1 (type A and B) or NPC1 or NPC2 (type C) genes, which lead to the accumulation of lipid substrates in the lysosomes of the liver, brain, spleen, lung, and bone marrow cells. This is followed by multiple cell damage, dysfunction of lysosomes, and finally dysfunction of body organs. So far, about 346, 575, and 30 mutations have been reported in SMPD1, NPC1, and NPC2 genes, respectively. Depending on the type of mutation and the clinical symptoms of the disease, the treatment will be different. The general aim of the current study is to review the clinical and molecular characteristics of patients with NPD and study various treatment methods for this disease with a focus on gene therapy approaches.


Assuntos
Terapia Genética , Mutação , Proteína C1 de Niemann-Pick , Humanos , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/metabolismo , Doenças de Niemann-Pick/genética , Doenças de Niemann-Pick/metabolismo , Doenças de Niemann-Pick/terapia , Doenças de Niemann-Pick/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Doença de Niemann-Pick Tipo C/terapia , Doença de Niemann-Pick Tipo C/metabolismo , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/patologia , Animais
2.
Artigo em Inglês | MEDLINE | ID: mdl-38568082

RESUMO

A novel moderately halophilic, Gram-stain-negative and facultatively anaerobic bacterium, designated as strain TBZ242T, was isolated from water of Urmia Lake in the Azerbaijan region of Iran. The cells were found to be rod-shaped and motile by a single polar flagellum, producing circular and yellowish colonies. The strain could grow in the presence of 0.5-10 % (w/v) NaCl (optimum, 2.5-5 %). The temperature and pH ranges for growth were 15-45 °C (optimum 30 °C) and pH 7.0-11.0 (optimum pH 8.0) on marine agar. The 16S rRNA gene sequence analysis revealed that strain TBZ242T belonged to the genus Marinobacter, showing the highest similarities to Marinobacter algicola DG893T (98.8 %), Marinobacter vulgaris F01T (98.8 %), Marinobacter salarius R9SW1T (98.5 %), Marinobacter panjinensis PJ-16T (98.4 %), Marinobacter orientalis W62T (98.0 %) and Marinobacter denitrificans JB2H27T (98.0 %). The 16S rRNA and core-genome phylogenetic trees showed that strain TBZ242T formed a distinct branch, closely related to a subclade accommodating M. vulgaris, M. orientalis, M. panjinensis, M. denitrificans, M. algicola, M. salarius and M. iranensis, within the genus Marinobacter. Average nucleotide identity and digital DNA-DNA hybridization values between strain TBZ242T and the type strains of the related species of Marinobacter were ≤85.0 and 28.6 %, respectively, confirming that strain TBZ242T represents a distinct species. The major cellular fatty acids of strain TBZ242T were C16 : 0 and C16 : 1 ω7c/C16 : 1 ω6c and the quinone was ubiquinone Q-9. The genomic DNA G+C content of strain TBZ242T is 57.2 mol%. Based on phenotypic, chemotaxonomic and genomic data, strain TBZ242T represents a novel species within the genus Marinobacter, for which the name Marinobacter azerbaijanicus sp. nov. is proposed. The type strain is TBZ242T (= CECT 30649T = IBRC-M 11466T). Genomic fragment recruitment analysis showed that this species prefers aquatic saline environments with intermediate salinities, being detected on metagenomic databases of Lake Meyghan (Iran) with 5 and 18 % salinity, respectively.


Assuntos
Ácidos Graxos , Marinobacter , Irã (Geográfico) , Composição de Bases , Ácidos Graxos/química , Lagos , Marinobacter/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana
3.
Artigo em Inglês | MEDLINE | ID: mdl-37842889

RESUMO

Allergic illnesses occur when an organism's immune system is excessively responsive to certain antigens, such as those that are presented in the environment. Some people suffer from a wide range of immune system-related illnesses including allergic rhinitis, asthma, food allergies, hay fever, and even anaphylaxis. Immunotherapy and medications are frequently used to treat allergic disorders. The use of probiotics in bacteriotherapy has lately gained interest. Probiotics are essential to human health by modulating the gut microbiota in some ways. Due to probiotics' immunomodulatory properties present in the gut microbiota of all animals, including humans, these bacterial strains can prevent a wide variety of allergic disorders. Probiotic treatment helps allergy patients by decreasing inflammatory cytokines and enhancing intestinal permeability, which is important in the battle against allergy. By altering the balance of Th1 and Th2 immune responses in the intestinal mucosa, probiotics can heal allergic disorders. Numerous studies have shown a correlation between probiotics and a reduced risk of allergy disorders. A wide range of allergic disorders, including atopic dermatitis, asthma, allergic retinitis and food allergies has been proven to benefit from probiotic bacteria. Therefore, the use of probiotics in the treatment of allergic diseases offers a promising perspective. Considering that probiotic intervention in the treatment of diseases is a relatively new field of study, more studies in this regard seem necessary.

4.
Cell Commun Signal ; 21(1): 143, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328876

RESUMO

In the last few decades, the role of cancer stem cells in initiating tumors, metastasis, invasion, and resistance to therapies has been recognized as a potential target for tumor therapy. Understanding the mechanisms by which CSCs contribute to cancer progression can help to provide novel therapeutic approaches against solid tumors. In this line, the effects of mechanical forces on CSCs such as epithelial-mesenchymal transition, cellular plasticity, etc., the metabolism pathways of CSCs, players of the tumor microenvironment, and their influence on the regulating of CSCs can lead to cancer progression. This review focused on some of these mechanisms of CSCs, paving the way for a better understanding of their regulatory mechanisms and developing platforms for targeted therapies. While progress has been made in research, more studies will be required in the future to explore more aspects of how CSCs contribute to cancer progression. Video Abstract.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/patologia , Células-Tronco Neoplásicas/metabolismo , Transição Epitelial-Mesenquimal
5.
Curr Cardiol Rev ; 19(5): 51-56, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37005512

RESUMO

Today, we see an increase in death due to cardiovascular diseases all over the world, which has a lot to do with the regulation of oxygen homeostasis. Also, hypoxia-inducing factor 1 (HIF-1) is considered a vital factor in hypoxia and its physiological and pathological changes. HIF- 1 is involved in cellular activities, including proliferation, differentiation, and cell death in endothelial cells (ECs) and cardiomyocytes. Similar to HIF-1α, which acts as a protective element against various diseases in the cardiovascular system, the protective role of microRNAs (miRNAs) has also been proved using animal models. The number of miRNAs identified in the regulation of gene expression responsive to hypoxia and the importance of investigating the involvement of the non-coding genome in cardiovascular diseases is increasing, which shows the issue's importance. In this study, the molecular regulation of HIF-1 by miRNAs is considered to improve therapeutic approaches in clinical diagnoses of cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , MicroRNAs , Animais , Humanos , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Hipóxia/genética , Hipóxia/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo
6.
BMC Complement Med Ther ; 23(1): 119, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37059982

RESUMO

BACKGROUND: The genus Artemisia of the Asteraceae family has different species that are used in the treatment of a wide range of diseases, including cancers due to the presence of valuable compounds and important medicinal properties. Various studies on the anti-tumor effect of different species of Artemisia have proven the cytotoxic properties of these plants in cancer treatment, and several anti-cancer compounds of this genus have been purified. OBJECTIVE: The objective of this study was to investigate the cytotoxicity and related mortality mechanisms of Artemisia marschalliana essential oil and extracts. METHODS: The essential oil and various extracts of Artemisia marschalliana were elicited using a Soxhlet extractor. Anti-cancer to anti-proliferative activity as MTT assay is measuring cancerous and non-cancerous cell viability. In the next step, the strongest extract fractions were obtained by using the vacuum liquid chromatography method. Flow cytometry was applied to identify the mechanism of cell death, and a Real-time polymerase chain reaction test of apoptosis genes, which encode apoptosis-regulating proteins, was measured to confirm the flow cytometry results. RESULTS: The strongest extract belonged to dichloromethane extract 60% fraction of the extract on breast cancer cells and 80% fraction on liposarcoma cancer cells showed the most cytotoxicity within 48 h, while, the fractions did not notable cytotoxicity of non-cancerous cells cell. Flow cytometry analysis illustrated the mentioned extract and its fractions kill cancer cell lines through the apoptosis mechanism. Our findings confirmed the flow cytometry results. In addition, the essential oil of Artemisia marschalliana showed a considerable cytotoxic property. CONCLUSION: Dichloromethane extract of Artemisia marschalliana shoot and its 60 and 80% fraction selectively inhibited the growth of cancer cells by inducing the apoptosis mechanism. Regarding obtained results, 60 and 80% fractions of dichloromethane extract can be a good candidate for future studies in the field of identification and separation of pure cytotoxic compounds.


Assuntos
Antineoplásicos , Artemisia , Óleos Voláteis , Artemisia/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Cloreto de Metileno , Linhagem Celular , Antineoplásicos/farmacologia , Óleos Voláteis/farmacologia , Óleos Voláteis/química
7.
Microrna ; 12(2): 131-142, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37073155

RESUMO

MicroRNAs are critical epigenetic regulators that can be used as diagnostic, prognostic, and therapeutic biomarkers for the treatment of various diseases, including gastrointestinal cancers, among a variety of cellular and molecular biomarkers. MiRNAs have also shown oncogenic or tumor suppressor roles in tumor tissue and other cell types. Studies showed that the dysregulation of miR-28 is involved in cell growth and metastasis of gastrointestinal cancers. MiR-28 plays a key role in controlling the physiological processes of cancer cells including growth and proliferation, migration, invasion, apoptosis, and metastasis. Therefore, miR-28 expression patterns can be used to distinguish patient subgroups. Based on the previous studies, miR-28 expression can be a suitable biomarker to detect tumor size and predict histological grade metastasis. In this review, we summarize the inhibitory effects of miR-28 as a metastasis suppressor in gastrointestinal cancers. miR-28 plays a role as a tumor suppressor in gastrointestinal cancers by regulating cancer cell growth, cell differentiation, angiogenesis, and metastasis. As a result, using it as a prognostic, diagnostic, and therapeutic biomarker in the treatment of gastrointestinal cancers can be a way to solve the problems in this field.


Assuntos
Neoplasias Gastrointestinais , MicroRNAs , Humanos , MicroRNAs/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Gastrointestinais/genética , Regulação Neoplásica da Expressão Gênica
8.
IET Nanobiotechnol ; 17(4): 326-336, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37021433

RESUMO

In nanotechnology, compounds containing metal materials are used in pharmaceutical sciences. The main purpose of this research was to introduce a novel method to control the amount of zeolite imidazolate framework (ZIF) in water by forming a protective layer such as layered double hydroxide (LDH). Firstly, ZIF was synthesised as the nucleus of the nanocomposite, and then LDH was formed by in situ synthesis as a protective layer. Scanning electron microscope, Fourier-transform infrared spectroscopy, X-Ray Diffraction, and Brunauer, Emmett and Teller techniques were used to determine (ZIF-8@LDH chemical structure and morphology. Our findings revealed that the ZIF-8@LDH-MTX complex could interact with carboxyl groups and trivalent cations by creating a bifurcation bridge, clarity, and high thermal stability. The antibacterial test indicated that ZIF-8@LDH was able to inhibit pathogenic growth. 2,5-Diphenyl-2H-Tetrazolium Bromide assay results showed that ZIF-8@LDH alone had no notable cytotoxic effect on Michigan Cancer Foundation-7 (MCF-7) cancer cells. However, the cytotoxicity rate was significantly increased in treated MCF-7 cells with ZIF-8@LDH-MTX compared to that of treated cells with methotrexate alone, which can be reasoned by the protection of drug structure and increasing its permeability. The drug release profile was constant at pH = 7.4. All findings indicated that the ZIF-8@LDH complex could be considered a newly proposed solution for effective anti-cancer drug delivery.


Assuntos
Antineoplásicos , Nanocompostos , Neoplasias , Zeolitas , Humanos , Zeolitas/química , Porosidade , Hidróxidos , Metotrexato/farmacologia , Antineoplásicos/farmacologia
9.
Virol J ; 20(1): 23, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36755327

RESUMO

BACKGROUND: The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to plague the world. While COVID-19 is asymptomatic in most individuals, it can cause symptoms like pneumonia, ARDS (acute respiratory distress syndrome), and death in others. Although humans are currently being vaccinated with several COVID-19 candidate vaccines in many countries, however, the world still is relying on hygiene measures, social distancing, and approved drugs. RESULT: There are many potential therapeutic agents to pharmacologically fight COVID-19: antiviral molecules, recombinant soluble angiotensin-converting enzyme 2 (ACE2), monoclonal antibodies, vaccines, corticosteroids, interferon therapies, and herbal agents. By an understanding of the SARS-CoV-2 structure and its infection mechanisms, several vaccine candidates are under development and some are currently in various phases of clinical trials. CONCLUSION: This review describes potential therapeutic agents, including antiviral agents, biologic agents, anti-inflammatory agents, and herbal agents in the treatment of COVID-19 patients. In addition to reviewing the vaccine candidates that entered phases 4, 3, and 2/3 clinical trials, this review also discusses the various platforms that are used to develop the vaccine COVID-19.


Assuntos
COVID-19 , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Peptidil Dipeptidase A , Antivirais/uso terapêutico , Antivirais/química , Vacinas contra COVID-19
11.
J Appl Clin Med Phys ; 24(2): e13879, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36546569

RESUMO

Nanoscopic lesions (complex damages), are the most lethal lesions for the cells. As nanoparticles have become increasingly popular in radiation therapy and the importance of analyzing nanoscopic dose enhancement has increased, a reliable tool for nanodosimetry has become indispensable. In this regard, the DNA plasmid is a widely used tool as a nanodosimetry probe in radiobiology and nano-radiosensitization studies. This approach is helpful for unraveling the radiosensitization role of nanoparticles in terms of physical and physicochemical effects and for quantifying radiation-induced biological damage. This review discusses the potential of using plasmid DNA assays for assessing the relative effects of nano-radiosensitizers, which can provide a theoretical basis for the development of nanoscopic biodosimetry and nanoparticle-based radiotherapy.


Assuntos
Nanopartículas Metálicas , Radiossensibilizantes , Humanos , Radiobiologia , DNA , Plasmídeos
12.
Biopreserv Biobank ; 21(1): 38-45, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35446125

RESUMO

Purpose: Promoting neurogenesis is a promising strategy to treat neurodegenerative disorders. In the present study, we aimed to evaluate the effect of mastic gum resin from the Pistacia lentiscus var. Chia (Anacardiaceae family) in proliferation capacity and differentiation of embryonic mesenchymal stem cells into a neural lineage. Methods: For this purpose, mastic gum was applied as a neural inducer for stem cell differentiation into the neuronal lineage. Following treatment of embryonic stem cells (ESCs) with mastic gum, verification differentiation of the ESCs into the neuronal lineage, gene expression analysis, and immunocytochemistry staining approach were performed. Results: Gene expression analysis demonstrated that mastic gum increased the expression level of neuron markers in the ESCs-derived neuron-like cells. Moreover, our immunocytochemistry staining results of two important neural stem cell markers, including Nestin and microtubule-associated protein-2 (Map2) expression confirmed that mastic gum has the potential to promote neuronal differentiation in ESCs. Conclusion: In summary, the use of mastic gum to stimulate the differentiation of ESCs into a neural lineage can be considered as a good candidate in stem cell therapy.


Assuntos
Células-Tronco Embrionárias Murinas , Pistacia , Animais , Camundongos , Resina Mástique , Resinas Vegetais/farmacologia
13.
Cell Commun Signal ; 20(1): 172, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316776

RESUMO

Acute myeloid leukemia (AML) is a type of leukemia with a poor prognosis and survival characterized by abnormal cell proliferation and differentiation. Despite advances in treatment, AML still has a low complete remission rate, particularly in elderly patients, and recurrences are frequently seen even after complete remissions. The major challenge in treating AML is the resistance of leukemia cells to chemotherapy drugs. Thus, to overcome this issue, it can be crucial to conduct new investigations to explore the mechanisms of chemo-resistance in AML and target them. In this review, the potential role of autophagy induced by FLT3-ITD and acid ceramidase in chemo-resistance in AML patients are analyzed. With regard to the high prevalence of FLT3-ITD mutation (about 25% of AML cases) and high level of acid ceramidase in these patients, we hypothesized that both of these factors could lead to chemo-resistance by inducing autophagy. Therefore, pharmacological targeting of autophagy, FLT3-ITD, and acid ceramidase production could be a promising therapeutic approach for such AML patients to overcome chemo-resistance. Video abstract.


Assuntos
Ceramidase Ácida , Leucemia Mieloide Aguda , Humanos , Idoso , Ceramidase Ácida/genética , Ceramidase Ácida/uso terapêutico , Mutação , Leucemia Mieloide Aguda/tratamento farmacológico , Autofagia , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/uso terapêutico
14.
Adv Pharm Bull ; 12(4): 747-756, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36415634

RESUMO

Cancer is a serious debilitating disease and one of the most common causes of death. In recent decades the high risk of various cancers enforced scientists to discover novel prevention and treatment methods to diminish the mortality of this terrifying disease. Accordingly, its prevention can be possible in near future. Based on epidemiological evidence, there is a clear link between pathogenic fungal infections and cancer development. This association is often seen in people with weakened immune systems such as the elderly and people with acquired immunodeficiency (AIDS). Carcinoma in these people is first seen chronically and then acutely. Although the different genetic and environmental risk factors are involved in carcinogenesis, one of the most important risk factors is fungal species and infections associating with cancers etiology. Now it is known that microbial infection is responsible for initiating 2.2 million new cancer cases. In this way, many recent studies have focused on investigating the role and mechanism of fungal infections in diverse cancers occurrence. This review provides a comprehensive framework of the latest clinical findings and the association of fungal infections with versatile cancers including esophageal, gastric, colorectal, lung, cervical, skin, and ovarian cancer.

15.
Front Pharmacol ; 13: 926607, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36188551

RESUMO

Neuropsychiatric diseases are a group of disorders that cause significant morbidity and disability. The symptoms of psychiatric disorders include anxiety, depression, eating disorders, autism spectrum disorders (ASD), attention-deficit/hyperactivity disorder, and conduct disorder. Various medicinal plants are frequently used as therapeutics in traditional medicine in different parts of the world. Nowadays, using medicinal plants as an alternative medication has been considered due to their biological safety. Despite the wide range of medications, many patients are unable to tolerate the side effects and eventually lose their response. By considering the therapeutic advantages of medicinal plants in the case of side effects, patients may prefer to use them instead of chemical drugs. Today, the use of medicinal plants in traditional medicine is diverse and increasing, and these plants are a precious heritage for humanity. Investigation about traditional medicine continues, and several studies have indicated the basic pharmacology and clinical efficacy of herbal medicine. In this article, we discuss five of the most important and common psychiatric illnesses investigated in various studies along with conventional therapies and their pharmacological therapies. For this comprehensive review, data were obtained from electronic databases such as MedLine/PubMed, Science Direct, Web of Science, EMBASE, DynaMed Plus, ScienceDirect, and TRIP database. Preclinical pharmacology studies have confirmed that some bioactive compounds may have beneficial therapeutic effects in some common psychiatric disorders. The mechanisms of action of the analyzed biocompounds are presented in detail. The bioactive compounds analyzed in this review are promising phytochemicals for adjuvant and complementary drug candidates in the pharmacotherapy of neuropsychiatric diseases. Although comparative studies have been carefully reviewed in the preclinical pharmacology field, no clinical studies have been found to confirm the efficacy of herbal medicines compared to FDA-approved medicines for the treatment of mental disorders. Therefore, future clinical studies are needed to accelerate the potential use of natural compounds in the management of these diseases.

16.
Cancer Cell Int ; 22(1): 262, 2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-35989351

RESUMO

Glioblastoma belongs to the most aggressive type of cancer with a low survival rate that is characterized by the ability in forming a highly immunosuppressive tumor microenvironment. Intercellular communication are created via exosomes in the tumor microenvironment through the transport of various biomolecules. They are primarily involved in tumor growth, differentiation, metastasis, and chemotherapy or radiation resistance. Recently several studies have highlighted the critical role of tumor-derived exosomes against immune cells. According to the structural and functional properties, exosomes could be essential instruments to gain a better molecular mechanism for tumor understanding. Additionally, they are qualified as diagnostic/prognostic markers and therapeutic tools for specific targeting of invasive tumor cells such as glioblastomas. Due to the strong dependency of exosome features on the original cells and their developmental status, it is essential to review their critical modulating molecules, clinical relevance to glioma, and associated signaling pathways. This review is a non-clinical study, as the possible role of exosomes and exosomal microRNAs in glioma cancer are reported. In addition, their content to overcome cancer resistance and their potential as diagnostic biomarkers are analyzed.

17.
Cancer Cell Int ; 22(1): 257, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35971151

RESUMO

Over the past few years, the cancer-related disease has had a high mortality rate and incidence worldwide, despite clinical advances in cancer treatment. The drugs used for cancer therapy, have high side effects in addition to the high cost. Subsequently, to reduce these side effects, many studies have suggested the use of natural bioactive compounds. Among these, which have recently attracted the attention of many researchers, quercetin has such properties. Quercetin, a plant flavonoid found in fresh fruits, vegetables and citrus fruits, has anti-cancer properties by inhibiting tumor proliferation, invasion, and tumor metastasis. Several studies have demonstrated the anti-cancer mechanism of quercetin, and these mechanisms are controlled through several signalling pathways within the cancer cell. Pathways involved in this process include apoptotic, p53, NF-κB, MAPK, JAK/STAT, PI3K/AKT, and Wnt/ß-catenin pathways. In addition to regulating these pathways, quercetin controls the activity of oncogenic and tumor suppressor ncRNAs. Therefore, in this comprehensive review, we summarized the regulation of these signalling pathways by quercetin. The modulatory role of quercetin in the expression of various miRNAs has also been discussed. Understanding the basic anti-cancer mechanisms of these herbal compounds can help prevent and manage many types of cancer.

18.
Arch Microbiol ; 204(8): 496, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35849218

RESUMO

A novel Gram-negative, facultative anaerobic, rod-shaped, and non-motile bacterium with bio-degradation potential of polycyclic aromatic hydrocarbons (PAHs) and uranium bio-reduction, designated as RCRI7T, was isolated from Qurugöl Lake water near Tabriz city. Strain RCRI7T can grow in the absence of NaCl and tolerates up to 3% NaCl (optimum, 0-0.5%), at the temperature range of 4-45 °C (optimum, 30 °C) and a pH range of 6-9 (optimum, pH 7 ± 0.5). Results of phylogenetic analysis based on 16S rRNA gene sequence indicated that strain RCRI7T is affiliated with the genus Shewanella, most closely related to Shewanella xiamenensis S4T (99.1%) and Shewanella putrefaciens JCM 20190T (98.9%). The genomic DNA G+C content of strain RCRI7T is 41 mol%. The major fatty acids are C16:1ω9c, C18:1ω9c and iso-C17:1ω5c. The OrthoANI and ANIb values between RCRI7T and Shewanella xiamenensis S4T were 87.4% and 87.7%, and between RCRI7T and Shewanella putrefaciens JCM 20190T were 79.5% and 79.7%, respectively. Strain RCRI7T displayed dDDH values of 30.2% and 39.8% to Shewanella xiamenensis S4T and Shewanella putrefaciens JCM 20190T, respectively. The major polar lipids include phosphatidylglycerol (PG) and phosphatidylethanolamine (PE). The respiratory quinone is Q8. Based on the polyphasic evidence presented in this paper, strain RCRI7T is considered to represent a novel species, with bioremediation potential, in the genus Shewanella, for which the name Shewanella azerbaijanica sp. nov. is proposed. The type strain is RCRI7T (= JCM 17276T) (= KCTC 62476T).


Assuntos
Shewanella , Cloreto de Sódio , Técnicas de Tipagem Bacteriana , Biodegradação Ambiental , DNA Bacteriano/genética , Ácidos Graxos , Fosfolipídeos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Shewanella/genética
19.
Cancer Cell Int ; 22(1): 200, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614494

RESUMO

Cancer can be induced by a variety of possible causes, including tumor suppressor gene failure and proto-oncogene hyperactivation. Tumor-associated extrachromosomal circular DNA has been proposed to endanger human health and speed up the progression of cancer. The amplification of ecDNA has raised the oncogene copy number in numerous malignancies according to whole-genome sequencing on distinct cancer types. The unusual structure and function of ecDNA, and its potential role in understanding current cancer genome maps, make it a hotspot to study tumor pathogenesis and evolution. The discovery of the basic mechanisms of ecDNA in the emergence and growth of malignancies could lead researchers to develop new cancer therapies. Despite recent progress, different aspects of ecDNA require more investigation. We focused on the features, and analyzed the bio-genesis, and origin of ecDNA in this review, as well as its functions in neuroblastoma and glioma cancers.

20.
Virol J ; 19(1): 92, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35619180

RESUMO

Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has posed a significant threat to global health. This virus affects the respiratory tract and usually leads to pneumonia in most patients and acute respiratory distress syndrome (ARDS) in 15% of cases. ARDS is one of the leading causes of death in patients with COVID-19 and is mainly triggered by elevated levels of pro-inflammatory cytokines, referred to as cytokine storm. Interleukins, such as interleukin-6 (1L-6), interleukin-1 (IL-1), interleukin-17 (IL-17), and tumor necrosis factor-alpha (TNF-α) play a very significant role in lung damage in ARDS patients through the impairments of the respiratory epithelium. Cytokine storm is defined as acute overproduction and uncontrolled release of pro-inflammatory markers, both locally and systemically. The eradication of COVID-19 is currently practically impossible, and there is no specific treatment for critically ill patients with COVID-19; however, suppressing the inflammatory response may be a possible strategy. In light of this, we review the efficacy of specific inhibitors of IL6, IL1, IL-17, and TNF-α for treating COVID-19-related infections to manage COVID-19 and improve the survival rate for patients suffering from severe conditions.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , COVID-19/complicações , Síndrome da Liberação de Citocina , Humanos , Interleucina-17 , Interleucina-6 , Pulmão/patologia , SARS-CoV-2 , Fator de Necrose Tumoral alfa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA