Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709159

RESUMO

Most pancreatic islets are destroyed immediately after intraportal transplantation by an instant blood-mediated inflammatory reaction (IBMIR) generated through activation of coagulation, complement, and proinflammatory pathways. Thus, effective mitigation of IBMIR may be contingent on the combined use of agents targeting these pathways for modulation. CD47 and thrombomodulin (TM) are two molecules with distinct functions in regulating coagulation and proinflammatory responses. We previously reported that the islet surface can be modified with biotin for transient display of novel forms of these two molecules chimeric with streptavidin (SA), that is, thrombomodulin chimeric with SA (SA-TM) and CD47 chimeric with SA (SA-CD47), as single agents with improved engraftment following intraportal transplantation. This study aimed to test whether islets can be coengineered with SA-TM and SA-CD47 molecules as a combinatorial approach to improve engraftment by inhibiting IBMIR. Mouse islets were effectively coengineered with both molecules without a detectable negative impact on their viability and metabolic function. Coengineered islets were refractory to destruction by IBMIR ex vivo and showed enhanced engraftment and sustained function in a marginal mass syngeneic intraportal transplantation model. Improved engraftment correlated with a reduction in intragraft innate immune infiltrates, particularly neutrophils and M1 macrophages. Moreover, transcripts for various intragraft procoagulatory and proinflammatory agents, including tissue factor, HMGB1 (high-mobility group box-1), IL-1ß, IL-6, TNF-α, IFN-γ, and MIP-1α, were significantly reduced in coengineered islets. These data demonstrate that the transient codisplay of SA-TM and SA-CD47 proteins on the islet surface is a facile and effective platform to modulate procoagulatory and inflammatory responses with implications for both autologous and allogeneic islet transplantation.

2.
Vaccines (Basel) ; 12(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543974

RESUMO

Natural 4-1BBL (CD137L) is a cell membrane-bound protein critical to the expansion, effector function, and survival of CD8+ T cells. We reported the generation of an active soluble oligomeric construct, SA-4-1BBL, with demonstrated immunoprevention and immunotherapeutic efficacy in various mouse tumor models. Herein, we developed an oncolytic adenovirus (OAd) for the delivery and expression of SA-4-1BBL (OAdSA-4-1BBL) into solid tumors for immunotherapy. SA-4-1BBL protein expressed by this construct produced T-cell proliferation in vitro. OAdSA-4-1BBL decreased cell viability in two mouse lung cancer cell lines, TC-1 and CMT64, but not in the non-cancerous lung MM14.Lu cell line. OAdSA-4-1BBL induced programmed cell death types I and II (apoptosis and autophagy, respectively), and autophagy-mediated adenosine triphosphate (ATP) release was also detected. Intratumoral injection of OAdSA-4-1BBL efficiently expressed the SA-4-1BBL protein in the tumors, resulting in significant tumor suppression in a syngeneic subcutaneous TC-1 mouse lung cancer model. Tumor suppression was associated with a higher frequency of dendritic cells and an increased infiltration of cytotoxic CD8+ T and NK cells into the tumors. Our data suggest that OAdSA-4-1BBL may present an efficacious alternative therapeutic strategy against lung cancer as a standalone construct or in combination with other immunotherapeutic modalities, such as immune checkpoint inhibitors.

3.
Saudi Pharm J ; 32(1): 101916, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38178850

RESUMO

Glycation is the non-enzymatic adduct formation between reducing sugars or dicarbonyls with proteins and is a crucial molecular event under hyperglycaemic conditions of diabetes. The accumulation of advanced glycation end products (AGEs) due to glycation of proteins has been implicated in several diseases associated with ageing and diabetes. Thus, investigating the antiglycation potential of some trace metal ions (Manganese; Mn2+, and Zinc; Zn2+) and polyphenolic extract of chickpea seeds (PEC) on the methylglyoxal (MGO) induced glycation of a phytocystatin isolated from chickpea was taken up to find an inexpensive and non-toxic therapeutic means of medicating protein glycation and associated diabetic complications. The current study focused on the comparative analyses of these micronutrients and herbal extracts in inhibiting protein glycation and AGEs formation in a quest to develop nutraceuticals for managing diabetes. The effect of metals (Mn2+, Zn2+) and PEC on protein glycation was assessed by different techniques, i.e., glycation-specific AGE fluorescence and absorbance, thiol protease inhibitory activity assay, and conformational alterations by spectroscopic assays. This study revealed the significant anti-glycation potencies of Mn2+, Zn2+, and PEC against the MGO-induced glycation of CPC, which might pave the way for resolving pathological complications of diabetes by combining higher levels of efficacy, selectivity, and safety in humans. Moreover, characterization and identification of different AGEs formed during the glycation process in diabetics was done to apply the same for determining the onset of glycation at the early stage so that appropriate steps be taken to address the menace of diabetic complications.

4.
Epidemiol Infect ; 152: e14, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38178722

RESUMO

Using two rounds of serosurveillance, we aimed to observe the COVID-19 vaccination status and the dynamics of antibody responses to different vaccines among urban slum and non-slum populations of Bangladesh. Adults (>18 years) and children (10-17 years) were enrolled in March and October 2022. Data including COVID-19 vaccine types and dosage uptake were collected. SARS-CoV-2 spike (S)-specific antibodies were measured in blood. The proportion of vaccinated children was significantly lower among slum than non-slum populations. Two doses of vaccines showed an increase in the level of anti-S-antibodies up to 2 months, followed by reduced levels at 2-6 months and a resurgence at 6-12 months. Children showed significantly higher anti-S-antibodies after two doses of the Pfizer-BioNTech vaccine than adults; however, after 6 months, the level of antibodies declined in younger children (10 - < 12 years). In a mixed vaccine approach, mRNA vaccines contributed to the highest antibody response whether given as the first two doses or as the third dose. Our findings emphasized the need for increasing the coverage of COVID-19 vaccination among slum children and booster dosing among all children. The use of mRNA vaccines in the mixed vaccination approach was found to be useful in boosting the antibody response to SARS-CoV-2.


Assuntos
COVID-19 , Áreas de Pobreza , Adulto , Criança , Humanos , Vacinas contra COVID-19 , População Urbana , Bangladesh/epidemiologia , Vacinas de mRNA , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2
5.
PLoS One ; 18(11): e0293666, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37943817

RESUMO

The primary objective of this study is to uncover novel therapeutic agents for the treatment of Glioblastoma Multiforme (GBM), a highly aggressive form of brain cancer, and Alzheimer's Disease (AD). Given the complexity and resistance associated with both conditions, the study underscores the imperative need for therapeutic alternatives that can traverse the biological intricacies inherent in both neuro-oncological and neurodegenerative disorders. To achieve this, a meticulous, target-based virtual screening was employed on an ensemble of 50 flavonoids and polyphenol derivatives primarily derived from plant sources. The screening focused predominantly on molecular targets pertinent to GBM but also evaluated the potential overlap with neural pathways involved in AD. The study utilized molecular docking and Molecular Dynamic (MD) simulation techniques to analyze the interaction of these compounds with a key biological target, protein tyrosine phosphatase receptor-type Z (PTPRZ). Out of the 50 compounds examined, 10 met our stringent criteria for binding affinity and specificity. Subsequently, the highest value of binding energy was observed for the synergistic binding of luteolin and ferulic acid with the value of -10.5 kcal/mol. Both compounds exhibited inherent neuroprotective properties and demonstrated significant potential as pathway inhibitors in GBM as well as molecular modulators in AD. Drawing upon advanced in-silico cytotoxicity predictions and sophisticated molecular modeling techniques, this study casts a spotlight on the therapeutic capabilities of polyphenols against GBM. Furthermore, our findings suggest that leveraging these compounds could catalyze a much-needed paradigm shift towards more integrative therapeutic approaches that span the breadth of both neuro-oncology and neurodegenerative diseases. The identification of cross-therapeutic potential in flavonoids and polyphenols could drastically broaden the scope of treatment modalities against both fatal diseases.


Assuntos
Angelica sinensis , Cannabis , Glioblastoma , Humanos , Simulação de Acoplamento Molecular , Luteolina/farmacologia , Glioblastoma/tratamento farmacológico , Simulação de Dinâmica Molecular
6.
Front Pharmacol ; 14: 1236173, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900167

RESUMO

Cancer has been one of the leading causes of mortality worldwide over the past few years. Some progress has been made in the development of more effective cancer therapeutics, resulting in improved survival rates. However, the desired outcome in the form of successful treatment is yet to be achieved. There is high demand for the development of innovative, inexpensive, and effective anticancer treatments using natural resources. Natural compounds have been increasingly discovered and used for cancer therapy owing to their high molecular diversity, novel biofunctionality, and minimal side effects. These compounds can be utilized as chemopreventive agents because they can efficiently inhibit cell growth, control cell cycle progression, and block several tumor-promoting signaling pathways. PI3K is an important upstream protein of the PI3K-Akt-mTOR pathway and a well-established cancer therapeutic target. This study aimed to explore the small molecules, natural flavonoids, viz. quercetin, luteolin, kaempferol, genistein, wogonin, daidzein, and flavopiridol for PI3Kγ kinase activity inhibition. In this study, the binding pose, interacting residues, molecular interactions, binding energies, and dissociation constants were investigated. Our results showed that these flavonoids bound well with PI3Kγ with adequate binding strength scores and binding energy ranging from (-8.19 to -8.97 Kcal/mol). Among the explored ligands, flavopiridol showed the highest binding energy of -8.97 Kcal/mol, dock score (-44.40), and dissociation constant term, pKd of 6.58 against PI3Kγ. Based on the above results, the stability of the most promising ligand, flavopiridol, against PI3Kγ was evaluated by molecular dynamics simulations for 200 ns, confirming the stable flavopiridol and PI3Kγ complex. Our study suggests that among the selected flavonoids specifically flavopiridol may act as potential inhibitors of PI3Kγ and could be a therapeutic alternative to inhibit the PI3Kγ pathway, providing new insights into rational drug discovery research for cancer therapy.

7.
Cancer Immunol Immunother ; 72(11): 3567-3579, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37605009

RESUMO

Immunotherapy utilizing checkpoint inhibitors has shown remarkable success in the treatment of cancers. In addition to immune checkpoint inhibitors, immune co-stimulation has the potential to enhance immune activation and destabilize the immunosuppressive tumor microenvironment. CD137, also known as 4-1BB, is one of the potent immune costimulatory receptors that could be targeted for effective immune co-stimulation. The interaction of the 4-1BB receptor with its natural ligand (4-1BBL) generates a strong costimulatory signal for T cell proliferation and survival. 4-1BBL lacks costimulatory activity in soluble form. To obtain co-stimulatory activity in soluble form, a recombinant 4-1BBL protein was generated by fusing the extracellular domains of murine 4-1BBL to a modified version of streptavidin (SA-4-1BBL). Treatment with SA-4-1BBL inhibited the development of lung tumors in A/J mice induced by weekly injections of the tobacco carcinogen NNK for eight weeks. The inhibition was dependent on the presence of T cells and NK cells; depletion of these cells diminished the SA-4-1BBL antitumor protective effect. The number of lung tumor nodules was significantly reduced by the administration of SA-4-1BBL to mice during ongoing exposure to NNK. The data presented in this paper suggest that utilizing an immune checkpoint stimulator as a single agent generate a protective immune response against lung cancer in the presence of a carcinogen. More broadly, this study suggests that immune checkpoint stimulation can be extended to a number of other cancer types, including breast and prostate cancers, for which improved diagnostics can detect disease at the preneoplastic stage.


Assuntos
Neoplasias Pulmonares , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral , Camundongos , Animais , Carcinógenos/toxicidade , Linfócitos T , Ligante 4-1BB , Proteínas Recombinantes , Neoplasias Pulmonares/induzido quimicamente , Microambiente Tumoral
8.
Front Immunol ; 14: 1138145, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153623

RESUMO

Leprosy is a chronic bacterial disease caused by Mycobacterium leprae. Leprosy patients have been found to have defects in T cells activation, which is critical to the clearance of the bacilli. Treg cell suppression is mediated by inhibitory cytokines such as IL10, IL-35 and TGF-ß and its frequency is higher in leprosy patients. Activation and overexpression of programmed death 1 (PD-1) receptor is considered to one of the pathways to inhibit T-cell response in human leprosy. In the current study we address the effect of PD-1 on Tregs function and its immuno-suppressive function in leprosy patients. Flow cytometry was used to evaluate the expression of PD-1 and its ligands on various immune cells T cells, B cells, Tregs and monocytes. We observed higher expression of PD-1 on Tregs is associated with lower production of IL-10 in leprosy patients. PD-1 ligands on T cells, B cells, Tregs and monocytes found to be higher in the leprosy patients as compared to healthy controls. Furthermore, in vitro blocking of PD-1 restores the Tregs mediated suppression of Teff and increase secretion of immunosuppressive cytokine IL-10. Moreover, overexpression of PD-1 positively correlates with disease severity as well as Bacteriological Index (BI) among leprosy patients. Collectively, our data suggested that PD-1 overexpression on various immune cells is associated with disease severity in human leprosy. Manipulation and inhibition of PD-1 signaling pathway on Tregs alter and restore the Treg cell suppression activity in leprosy patients.


Assuntos
Interleucina-10 , Hanseníase , Humanos , Interleucina-10/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Mycobacterium leprae , Linfócitos T Reguladores , Citocinas/metabolismo
9.
Healthcare (Basel) ; 11(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37239730

RESUMO

OBJECTIVES: To examine the levels and socio-demographic differentials of: (a) reported COVID-like symptoms; and (b) seroprevalence data matched with COVID-like symptoms. METHODS: Survey data of reported COVID-like symptoms and seroprevalence were assessed by Roche Elecsys® Anti-SARS-CoV-2 immunoassay. Survey data of 10,050 individuals for COVID-like symptoms and seroprevalence data of 3205 individuals matched with COVID-like symptoms were analyzed using bivariate and multivariate logistic analysis. RESULTS: The odds of COVID-like symptoms were significantly higher for Chattogram city, for non-slum, people having longer years of schooling, working class, income-affected households, while for households with higher income had lower odd. The odds of matched seroprevalence and COVID-like symptoms were higher for non-slum, people having longer years of schooling, and for working class. Out of the seropositive cases, 37.77% were symptomatic-seropositive, and 62.23% were asymptomatic, while out of seronegative cases, 68.96% had no COVID-like symptoms. CONCLUSIONS: Collecting community-based seroprevalence data is important to assess the extent of exposure and to initiate mitigation and awareness programs to reduce COVID-19 burden.

10.
Mol Biol Rep ; 50(5): 4447-4457, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37014566

RESUMO

BACKGROUND: Ovarian cancer leads to devastating outcomes, and its treatment is highly challenging. At present, there is a lack of clinical symptoms, well-known sensitivity biomarkers, and patients are diagnosed at an advanced stage. Currently, available therapeutics against ovarian cancer are inefficient, costly, and associated with severe side effects. The present study evaluated the anticancer potential of zinc oxide nanoparticles (ZnO NPs) that were successfully biosynthesized in an ecofriendly mode using pumpkin seed extracts. METHODS AND RESULTS: The anticancer potential of the biosynthesized ZnO NPs was assessed using an in vitro human ovarian teratocarcinoma cell line (PA-1) by well-known assays such as MTT assay, morphological alterations, induction of apoptosis, measurement of reactive oxygen species (ROS) production, and inhibition of cell adhesion/migration. The biogenic ZnO NPs exerted a high level of cytotoxicity against PA-1 cells. Furthermore, the ZnO NPs inhibited cellular adhesion and migration but induced ROS production and cell death through programmed cell death. CONCLUSION: The aforementioned anticancer properties highlight the therapeutic utility of ZnO NPs in ovarian cancer treatment. However, further research is recommended to envisage their mechanism of action in different cancer models and validation in a suitable in vivo system.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Neoplasias Ovarianas , Teratocarcinoma , Óxido de Zinco , Feminino , Humanos , Óxido de Zinco/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Ovarianas/tratamento farmacológico
11.
Am J Transplant ; 23(5): 619-628, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36863480

RESUMO

The instant blood-mediated inflammatory reaction (IBMIR) is initiated by innate immune responses that cause substantial islet loss after intraportal transplantation. Thrombomodulin (TM) is a multifaceted innate immune modulator. In this study, we report the generation of a chimeric form of thrombomodulin with streptavidin (SA-TM) for transient display on the surface of islets modified with biotin to mitigate IBMIR. SA-TM protein expressed in insect cells showed the expected structural and functional features. SA-TM converted protein C into activated protein C, blocked phagocytosis of xenogeneic cells by mouse macrophages and inhibited neutrophil activation. SA-TM was effectively displayed on the surface of biotinylated islets without a negative effect on their viability or function. Islets engineered with SA-TM showed improved engraftment and established euglycemia in 83% of diabetic recipients when compared with 29% of recipients transplanted with SA-engineered islets as control in a syngeneic minimal mass intraportal transplantation model. Enhanced engraftment and function of SA-TM-engineered islets were associated with the inhibition of intragraft proinflammatory innate cellular and soluble mediators of IBMIR, such as macrophages, neutrophils, high-mobility group box 1, tissue factor, macrophage chemoattractant protein-1, interleukin-1ß, interleukin-6, tumor necrosis factor-α, interferon-γ. Transient display of SA-TM protein on the islet surface to modulate innate immune responses causing islet graft destruction has clinical potential for autologous and allogeneic islet transplantation.


Assuntos
Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Animais , Camundongos , Proteína C , Trombomodulina , Transplante Homólogo
12.
Arch Environ Contam Toxicol ; 84(2): 179-187, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36586095

RESUMO

In this study, we measured various parameters of oxidative stress, immune response, and abnormalities in the erythrocyte nucleus of Labeo rohita inhabiting the polluted Kshipra River, India. The river water contains heavy metals in this order: Ni > Fe > Cd > Cr > Mn > Zn > Cu. Fe showed the highest accumulation in gills, liver, and gut, whereas Ni (gills and gut) and Cd (liver) were lowest accumulated. The superoxide dismutase (SOD) and catalase (CAT) were found to be increased significantly (p < 0.05) in the gills (SOD: 211%; CAT: 150%), liver (SOD: 447%; CAT: 304%), and gut (SOD: 98.11%; CAT: 58.69%) in comparison with the reference fish. However, glutathione S transferase (GST) showed significantly (p < 0.05) higher activity in the gills (25.5%) but lower activity in the liver (- 49.22%) and the gut (- 30.57%). Moreover, reduced glutathione (GSH) decreased significantly (p < 0.05) in the gills (- 46.66%), liver (- 33.20%), and gut (- 39.87%). Despite the active response of the antioxidant enzymes, the highest lipid peroxidation was observed in the liver (463%). The effect of heavy metals was also observed on the immunity of the fish, causing immunosuppression as evident by significantly (p < 0.05) lower values of acid phosphatase (- 50%), myeloperoxidase (- 48.33%), and nitric oxide synthase (- 50%) in serum. Histopathological findings showed gill lamellae shortening, hyperplasia, club-shaped lamellar tip in exposed gills and necrosis, vacuolization, and pyknosis in the exposed liver. Furthermore, polluted river water was also found to induce micronuclei (2.1%) and lobed nuclei (0.72%) in erythrocytes (0.65%). These results indicate the potential of heavy metal-induced oxidative stress and other forms of stress in inhabiting fish, highlighting the need to control the pollution of this river water.


Assuntos
Cyprinidae , Metais Pesados , Poluentes Químicos da Água , Animais , Rios , Cádmio/metabolismo , Poluentes Químicos da Água/metabolismo , Metais Pesados/análise , Poluição da Água , Superóxido Dismutase/metabolismo , Catalase/metabolismo , Estresse Oxidativo , Cyprinidae/metabolismo , Oxirredução , Fígado/metabolismo , Água , Brânquias/metabolismo , Peroxidação de Lipídeos
13.
PLoS One ; 17(11): e0277758, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36374917

RESUMO

Smoking is one of the leading causes of premature deaths worldwide. The cigarette is the commonest form of tobacco smoking. This study investigated the factors associated with cigarette smoking among men in five South Asian countries. We analyzed nationally representative cross-sectional study (Demographic and Health Survey) data conducted in Afghanistan, India, Maldives, Nepal, and Pakistan from 2015-2018. Our study population was men aged between 15 and 49 years. The outcome variable was the prevalence of cigarette smoking. We performed both pooled and country-specific analyses using multivariable logistic regression. The prevalence of cigarette smoking among men is the highest (41.2%) in the Maldives and the lowest (20.1%) in Pakistan. Our pooled analysis found that higher age, lower education, lower wealth status, and involvement in any occupations were strongly associated with cigarette smoking (p-value <0.001). However, we did not find a significant association between age and wealth status in Afghanistan, occupations in Nepal and Pakistan, and education in Pakistan with cigarette smoking when country-specific analyses were performed. In this study, socioeconomic position, age, and urban area are strongly associated with cigarette smoking in South Asian countries. The country-specific circumstances should be considered in planning and designing national smoking control strategies and interventions. However, improving access to smoking cessation services could be an effective intervention for all studied countries, Afghanistan, India, Maldives, Nepal, and Pakistan.


Assuntos
Fumar Cigarros , Humanos , Masculino , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Fumar Cigarros/epidemiologia , Estudos Transversais , Prevalência , Inquéritos e Questionários , Índia/epidemiologia , Fatores Socioeconômicos
14.
Front Cell Infect Microbiol ; 12: 964265, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36034704

RESUMO

An outbreak of coronavirus disease 2019 (COVID-19) emerged in China in December 2019 and spread so rapidly all around the globe. It's continued and spreading more dangerously in India and Brazil with higher mortality rate. Understanding of the pathophysiology of COVID-19 depends on unraveling of interactional mechanism of SARS-CoV-2 and human immune response. The immune response is a complex process, which can be better understood by understanding the immunological response and pathological mechanisms of COVID-19, which will provide new treatments, increase treatment efficacy, and decrease mortality associated with the disease. In this review we present a amalgamate viewpoint based on the current available knowledge on COVID-19 which includes entry of the virus and multiplication of virus, its pathological effects on the cellular level, immunological reaction, systemic and organ presentation. T cells play a crucial role in controlling and clearing viral infections. Several studies have now shown that the severity of the COVID-19 disease is inversely correlated with the magnitude of the T cell response. Understanding SARS-CoV-2 T cell responses is of high interest because T cells are attractive vaccine targets and could help reduce COVID-19 severity. Even though there is a significant amount of literature regarding SARS-CoV-2, there are still very few studies focused on understanding the T cell response to this novel virus. Nevertheless, a majority of these studies focused on peripheral blood CD4+ and CD8+ T cells that were specific for viruses. The focus of this review is on different subtypes of T cell responses in COVID-19 patients, Th17, follicular helper T (TFH), regulatory T (Treg) cells, and less classical, invariant T cell populations, such as δγ T cells and mucosal-associated invariant T (MAIT) cells etc that could influence disease outcome.


Assuntos
COVID-19 , Brasil , Linfócitos T CD8-Positivos , Humanos , SARS-CoV-2 , Subpopulações de Linfócitos T
15.
Front Med (Lausanne) ; 9: 913848, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847777

RESUMO

Malaria elimination is a global priority, which India has also adopted as a target. Despite the malaria control efforts like long-lasting insecticidal nets distribution, rounds of indoor residual spray, the introduction of bi-valent rapid diagnostic tests and artemisinin combination therapy, malaria remained consistent in Dolonibasti sub-center of Orang block primary health center (BPHC) under the district Udalguri, Assam state followed by abrupt rise in cases in 2018. Therefore, we aimed to investigate the factors driving the malaria transmission in the outbreak area of Dolonibasti sub-center. Malaria epidemiological data (2008-2018) of Udalguri district and Orang BPHC was collected. The annual (2011-2018) and monthly (2013-2018) malaria and meteorological data of Dolonibasti sub-center was collected. An entomological survey, Knowledge, Attitude and Practices study among malaria cases (n = 120) from Dolonibasti was conducted. In 2018, 26.1 % (2136/ 8188) of the population of Dolonibasti were found to be malaria positive, of which 55% were adults (n = 1176). Majority of cases were from tea tribe populations (90%), either asymptomatic or with fever only, 67.5 % (81/120) had experienced malaria infection during past years. The outbreak was characterized by a strong increase in cases in June 2018, high proportion of slide falciparum rate of 26.1% (other years average, 15.8%) and high proportion of P. falciparum of 81.2 % (other years average, 84.3%). Anopheles minimus s.l. was the major vector with 28.6% positivity and high larval density in paddy fields/ drainage area. Annual relative humidity was associated with rise in malaria cases, annual parasite incidence (rs = 0.69, 90%CI; p = 0.06) and slide positivity rate (rs = 0.83, 95%CI; p = 0.01). Older people were less educated (rs = -0.66; p < 0.001), had lesser knowledge about malaria cause (rs = -0.42; χ2=21.80; p < 0.001) and prevention (rs = -0.18; p = 0.04). Malaria control practices were followed by those having knowledge about cause of malaria (rs = 0.36; χ2 = 13.50; p < 0.001) and prevention (rs = 0.40; χ2 = 17.71; p < 0.001). Altogether, 84.6% (44/52) of the respondents did not use protective measures. We described a sudden increase in malaria incidence in a rural, predominantly tea tribe population group with high illiteracy rate and ignorance on protective measures against malaria. More efforts that are concerted needed to educate the community about malaria control practices.

16.
Cells ; 11(14)2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35883653

RESUMO

Natural products play a critical role in the discovery and development of numerous drugs for the treatment of various types of cancer. These phytochemicals have demonstrated anti-carcinogenic properties by interfering with the initiation, development, and progression of cancer through altering various mechanisms such as cellular proliferation, differentiation, apoptosis, angiogenesis, and metastasis. Treating multifactorial diseases, such as cancer with agents targeting a single target, might lead to limited success and, in many cases, unsatisfactory outcomes. Various epidemiological studies have shown that the steady consumption of fruits and vegetables is intensely associated with a reduced risk of cancer. Since ancient period, plants, herbs, and other natural products have been used as healing agents. Likewise, most of the medicinal ingredients accessible today are originated from the natural resources. Regardless of achievements, developing bioactive compounds and drugs from natural products has remained challenging, in part because of the problem associated with large-scale sequestration and mechanistic understanding. With significant progress in the landscape of cancer therapy and the rising use of cutting-edge technologies, we may have come to a crossroads to review approaches to identify the potential natural products and investigate their therapeutic efficacy. In the present review, we summarize the recent developments in natural products-based cancer research and its application in generating novel systemic strategies with a focus on underlying molecular mechanisms in solid cancer.


Assuntos
Produtos Biológicos , Neoplasias , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Humanos , Imunoterapia , Neoplasias/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Compostos Fitoquímicos/uso terapêutico
17.
PLoS One ; 17(5): e0268093, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35604947

RESUMO

BACKGROUND: Seroprevalence studies have been carried out in many developed and developing countries to evaluate ongoing and past infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Data on this infection in marginalized populations in urban slums are limited, which may offer crucial information to update prevention and mitigation policies and strategies. We aimed to determine the seroprevalence of SARS-CoV-2 infection and factors associated with seropositivity in slum and non-slum communities in two large cities in Bangladesh. METHODS: A cross-sectional study was carried out among the target population in Dhaka and Chattogram cities between October 2020 and February 2021. Questionnaire-based data, anthropometric and blood pressure measurements and blood were obtained. SARS-CoV-2 serology was assessed by Roche Elecsys® Anti-SARS-CoV-2 immunoassay. RESULTS: Among the 3220 participants (2444 adults, ≥18 years; 776 children, 10-17 years), the overall weighted seroprevalence was 67.3% (95% confidence intervals (CI) = 65.2, 69.3) with 71.0% in slum (95% CI = 68.7, 72.2) and 62.2% in non-slum (95% CI = 58.5, 65.8). The weighted seroprevalence was 72.9% in Dhaka and 54.2% in Chattogram. Seroprevalence was positively associated with limited years of formal education (adjusted odds ratio [aOR] = 1.61; 95% CI = 1.43, 1.82), lower income (aOR = 1.23; 95% CI = 1.03, 1.46), overweight (aOR = 1.2835; 95% CI = 1.26, 1.97), diabetes (aOR = 1.67; 95% CI = 1.21, 2.32) and heart disease (aOR = 1.38; 95% CI = 1.03, 1.86). Contrarily, negative associations were found between seropositivity and regular wearing of masks and washing hands, and prior BCG vaccination. About 63% of the population had asymptomatic infection; only 33% slum and 49% non-slum population showed symptomatic infection. CONCLUSION: The estimated seroprevalence of SARS-CoV-2 was more prominent in impoverished informal settlements than in the adjacent middle-income non-slum areas. Additional factors associated with seropositivity included limited education, low income, overweight and pre-existing chronic conditions. Behavioral factors such as regular wearing of masks and washing hands were associated with lower probability of seropositivity.


Assuntos
COVID-19 , Adulto , Anticorpos Antivirais , Bangladesh/epidemiologia , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Criança , Estudos Transversais , Humanos , Sobrepeso , Áreas de Pobreza , SARS-CoV-2 , Estudos Soroepidemiológicos , Vacinação
18.
Pancreatology ; 22(5): 553-563, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35570091

RESUMO

Chronic pancreatitis (CP) is an irreversible fibro-inflammatory disease of the pancreas with no current targeted therapy. Pirfenidone, an anti-fibrotic and anti-inflammatory drug, is FDA approved for treatment of Idiopathic Pulmonary Fibrosis (IPF). Its efficacy in ameliorating CP has never been evaluated before. We recently reported that pirfenidone improves acute pancreatitis in mouse models. The aim of the current study was to evaluate the therapeutic efficacy of pirfenidone in mouse models of CP. We used caerulein and L-arginine models of CP and administered pirfenidone with ongoing injury, or in well-established disease. We evaluated for fibrosis by Sirius-red staining for collagen, immunohistochemistry, western blotting, and qPCR for fibrosis markers to show the salutary effects of pirfenidone in CP. Our results suggest that treatment with pirfenidone ameliorated CP related changes in the pancreas (i.e., atrophy, acinar cell loss, fibrosis, and inflammation) not only when administered with ongoing injury, but also in well-established models of caerulein as well as L-arginine induced CP. It reduces the pro-fibrotic phenotype of macrophages (in-vivo and in-vitro), reduces macrophage infiltration into the pancreas and alters the intra-pancreatic cytokine milieu preceding changes in histology. The therapeutic effect of pirfenidone is abrogated in absence of macrophages. Furthermore, it reduces collagen secretion, cytokine levels and fibrosis markers in pancreatic stellate cells in-vitro. As it is FDA approved, our findings in mouse models simulating clinical presentation of patients to the clinic, can be used as the basis of a clinical trial evaluating the efficacy of this drug as a therapeutic agent for CP.


Assuntos
Ceruletídeo , Pancreatite Crônica , Doença Aguda , Animais , Arginina , Colágeno/efeitos adversos , Citocinas , Modelos Animais de Doenças , Fibrose , Humanos , Camundongos , Pancreatite Crônica/patologia , Piridonas
19.
Semin Cancer Biol ; 86(Pt 2): 624-644, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35378274

RESUMO

Cancer has complex pathophysiology and is one of the primary causes of death and morbidity across the world. Chemotherapy, targeted therapy, radiation therapy, and immunotherapy are examples of traditional cancer treatments. However, these conventional treatment regimens have many drawbacks, such as lack of selectivity, non-targeted cytotoxicity, insufficient drug delivery at tumor sites, and multi-drug resistance, leading to less potent/ineffective cancer treatment. Due to its immanent biophysical property and ability to change in numerous ways, nano-technology has completely transformed how cancer is identified and treated in recent years. Furthermore, nanotechnology providing solutions to these restrictions and boosting cancer therapy. Nanoparticles are widely used nanomedicine platform in cancer immunotherapy due to their excellent physicochemical properties that include size, shape, and surface features, resulting into desirable biological interactions and have been categorized into several types. Nanoparticles can also be potentially be up taken by antigen-presenting cells that promote the cytosolic delivery of encapsulated antigens and adjuvants. Furthermore, nanoparticles can be fine-tuned and functionalized with specific moieties to promote their efficacy in targeting and delivering cargo materials to specific locations. In this review, we summarized and discussed nanoparticles and potential features to be used as carriers in cancer immunotherapy, the current status of different types of nanoparticles, and the importance of their functionalization. Furthermore, we have also discussed nanoparticles-based nanomedicine in targeted delivery of encapsulated cancer immunotherapeutic and their involvement in the modulation of the tumor microenvironment, promoting cancer immunotherapy.


Assuntos
Nanopartículas , Neoplasias , Humanos , Nanomedicina/métodos , Imunoterapia/métodos , Nanopartículas/química , Microambiente Tumoral , Neoplasias/tratamento farmacológico
20.
Microorganisms ; 10(2)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35208844

RESUMO

The ability to perform effectively in the gastrointestinal tract (GIT) is one of the most significant criteria in the selection of potential probiotic bacteria. Thus, the present study aimed to investigate the potential probiotic characteristics of some selected lactic acid bacteria (LAB) isolated from vegetable products. Probiotic characteristics included tolerance to acid and bile, cholesterol-removing ability, bile salt hydrolysis, resistance against lysozyme and antibiotics, production of exopolysaccharides (EPS), antimicrobial and hemolytic activities, and cell surface characteristics (auto-aggregation, co-aggregation, and hydrophobicity). The survival rate of isolates after G120 ranged from 8.0 to 8.6 Log10 CFU/mL. After the intestinal phase (IN-120), the bacterial count ranged from 7.3 to 8.5 Log10 CFU/mL. The bile tolerance rates ranged from 17.8 to 51.1%, 33.6 to 63.9%, and 55.9 to 72.5% for cholic acid, oxgall, and taurocholic acid, respectively. Isolates F1, F8, F23, and F37 were able to reduce cholesterol (>30%) from the broth. The auto-aggregation average rate increased significantly after 24 h for all isolates, while two isolates showed the highest hydrophobicity values. Moreover, isolates had attachment capabilities comparable to those of HT-29 cells, with an average of 8.03 Log10 CFU/mL after 2 h. All isolates were resistant to lysozyme and vancomycin, and 8 out of the 17 selected isolates displayed an ability to produce exopolysaccharides (EPS). Based on 16S rRNA sequencing, LAB isolates were identified as Enterococcus faecium, E. durans, E. lactis, and Pediococcus acidilactici.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA