Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Rev Sci Instrum ; 88(2): 025110, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28249482

RESUMO

Using frequency mixing, a modulated light pulse of ns duration is created. We show that, with a ps-resolution streak camera that is usually used for single short pulse measurements, we can detect via an FFT detection approach up to 450 GHz modulation in a pulse in a single measurement. This work is performed in the context of the AWAKE plasma wakefield experiment where modulation frequencies in the range of 80-280 GHz are expected.

3.
Phys Rev Lett ; 111(11): 114801, 2013 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-24074093

RESUMO

Initiating the gain process in a free-electron laser (FEL) from an external highly coherent source of radiation is a promising way to improve the pulse properties such as temporal coherence and synchronization performance in time-resolved pump-probe experiments at FEL facilities, but this so-called "seeding" suffers from the lack of adequate sources at short wavelengths. We report on the first successful seeding at a wavelength as short as 38.2 nm, resulting in GW-level, coherent FEL radiation pulses at this wavelength as well as significant second harmonic emission at 19.1 nm. The external seed pulses are about 1 order of magnitude shorter compared to previous experiments allowing an ultimate time resolution for the investigation of dynamic processes enabling breakthroughs in ultrafast science with FELs. The seeding pulse is the 21st harmonic of an 800-nm, 15-fs (rms) laser pulse generated in an argon medium. Methods for finding the overlap of seed pulses with electron bunches in spatial, longitudinal, and spectral dimensions are discussed and results are presented. The experiment was conducted at FLASH, the FEL user facility at DESY in Hamburg, Germany.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA