Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Chemosphere ; 349: 140809, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38036229

RESUMO

The long-term exposure effects of nanodiamonds (NDs), spanning an organism's entire lifespan and continuing for subsequent generation, remain understudied. Most research has focused on evaluating their biological impacts on cell lines and selected organisms, typically over short exposure durations lasting hours or days. The study aimed to assess growth, mortality, and digestive functions in wild (H) and long-lived (D) strains of Acheta domesticus (Insecta: Orthoptera) after two-generational exposure to NDs in concentrations of 0.2 or 2 mg kg-1 of food, followed by their elimination in the third generation. NDs induced subtle stimulating effect that depended on the strain and generation. In the first generation, more such responses occurred in the H than in the D strain. In the first generation of H strain insects, contact with NDs increased survival, stimulated the growth of young larvae, and the activity of most digestive enzymes in mature adults. The same doses and exposure time did not cause similar effects in the D strain. In the first generation of D strain insects, survival and growth were unaffected by NDs, whereas, in the second generation, significant stimulation of those parameters was visible. Selection towards longevity appears to support higher resistance of the insects to exposure to additional stressor, at least in the first generation. The cessation of ND exposure in the third generation caused potentially harmful changes, which included, e.g., decreased survival probability in H strain insects, slowed growth of both strains, as well as changes in heterochromatin density and distribution in nuclei of the gut cells in both strains. Such a reaction may suggest the involvement of epigenetic inheritance mechanisms, which may become inadequate after the stress factor is removed.


Assuntos
Gryllidae , Nanodiamantes , Animais , Nanodiamantes/toxicidade , Gryllidae/fisiologia , Linhagem Celular , Fatores de Tempo
2.
Environ Entomol ; 52(6): 1057-1070, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37804089

RESUMO

Mechanisms, including autophagy and apoptosis, which serve to regulate and ensure proper organism functions under optimal conditions, play additional defensive roles under environmental pressure. The aim of this study was to test the following hypotheses: (i) elevated autophagy and apoptosis intensity levels, as defensive processes in response to contact with cadmium, are maintained for a limited number of generations and (ii) the number of generations after which levels of cell death processes reach the reference level depends on selective pressure. Cell death processes were assessed by light and transmission electron microscopy, terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL), and cytometric analyses. Model insects (Spodoptera exiqua, Hübner, 1808) were orally exposed to various concentrations of cadmium for 18 generations and compared with reference strains exposed to cadmium or not (control) for over 150 generations. Elevated programmed cell death intensity levels decreased after several generations, indicating tolerance of individuals to cadmium in the diet and verifying the first hypothesis; however, testing the second hypothesis indicated that the number of generations depended not only on pressure intensity, but also on cell death type, since levels of autophagy remained increased for a minimum of 12 generations.


Assuntos
Cádmio , Mariposas , Animais , Spodoptera/fisiologia , Cádmio/toxicidade , Cádmio/metabolismo , Larva/metabolismo , Mariposas/metabolismo , Morte Celular
3.
Int J Mol Sci ; 24(16)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37629006

RESUMO

The use of nanoparticles like graphene oxide (GO) in nanocomposite industries is growing very fast. There is a strong concern that GO can enter the environment and become nanopollutatnt. Environmental pollutants' exposure usually relates to low concentrations but may last for a long time and impact following generations. Attention should be paid to the effects of nanoparticles, especially on the DNA stability passed on to the offspring. We investigated the multigenerational effects on two strains (wild and long-lived) of house cricket intoxicated with low GO concentrations over five generations, followed by one recovery generation. Our investigation focused on oxidative stress parameters, specifically AP sites (apurinic/apyrimidinic sites) and 8-OHdG (8-hydroxy-2'-deoxyguanosine), and examined the global DNA methylation pattern. Five intoxicated generations were able to overcome the oxidative stress, showing that relatively low doses of GO have a moderate effect on the house cricket (8-OHdG and AP sites). The last recovery generation that experienced a transition from contaminated to uncontaminated food presented greater DNA damage. The pattern of DNA methylation was comparable in every generation, suggesting that other epigenetic mechanisms might be involved.


Assuntos
Poluentes Ambientais , Gryllidae , Nanopartículas , Animais , Gryllidae/genética , 8-Hidroxi-2'-Desoxiguanosina , DNA
4.
Environ Toxicol Pharmacol ; 101: 104209, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37399851

RESUMO

Microplastic enlisted as a contaminant of emerging concerns in polluted environments interact with "traditional" contaminants such as metals, causing, among others, their increased accumulation in the body. Harmful effects depend on the exposed animals' possible preadaptation and/or cross-tolerance. The project aimed to assess the role of this phenomenon in the limited toxicity of polypropylene fibers (PPf) in 0%, 0.02%, 0.06, 0.18%, 0.54%, and 1.6% of Cd-supplemented food of larvae of Spodoptera exigua multigenerationally selected to cadmium tolerance. The activity of 20 digestive enzymes (API-ZYM test), defensins, and heat shock proteins, HSP70 levels in the exposed groups were used as biomarkers. PPfs caused the increase of Cd accumulation in the body, while intake of polypropylene microfibers did not change the biomarker levels. Moreover, multigenerational Cd pre-exposure, due to increased tolerance of Cd and, possibly, cross-tolerance, prepares the insects for an additional stressor (PPf) alone and in interaction with cadmium.


Assuntos
Cádmio , Polipropilenos , Animais , Cádmio/toxicidade , Cádmio/metabolismo , Polipropilenos/metabolismo , Plásticos , Proteínas de Choque Térmico , Spodoptera , Biomarcadores/metabolismo
5.
Chemosphere ; 303(Pt 2): 135129, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35636606

RESUMO

Nanodiamonds (NDs) are considered a material with low toxicity. However, no studies describe the effects of ND withdrawal after multigenerational exposure. The aim was to evaluate ND exposure (in the 1st and 2nd generations) effects at low concentrations (0.2 or 2 mg kg-1) and withdrawal (in the 3rd generation) in the wild (H) and longevity-selected (D) model insect Acheta domesticus. We measured selected oxidative stress parameters, immunity, types of cell death, and DNA damage. Most of the results obtained in the 1st generation, e.g., catalase (CAT), total antioxidant capacity (TAC), heat shock proteins (HSP70), defensins, or apoptosis level, confirmed no significant toxicity of low doses of NDs. Interestingly, strain-specific differences were observed. D-strain crickets reduced autophagy, the number of ROS+ cells, and DNA damage. The effect can be a symptom of mobilization of the organism and stimulation of physiological defense mechanisms in long-living organisms. The 2nd-generation D-strain insects fed ND-spiked food at higher concentrations manifested a reduction in CAT, TAC, early apoptosis, and DNA damage, together with an increase in HSP70 and defensins. ROS+ cells and cells with reduced membrane potential and autophagy did not differ significantly from the control. H-strain insects revealed a higher number of ROS+ cells and cells with reduced membrane potential, decreased CAT activity, and early apoptosis. Elimination of NDs from the diet in the 3rd generation did not cause full recovery of the measured parameters. We noticed an increase in the concentration of HSP70 and defensins (H-strain) and a decrease in apoptosis (D-strain). However, the most visible increase was a significant increase in DNA damage, especially in H-strain individuals. The results suggest prolonged adverse effects of NDs on cellular functions, reaching beyond "contact time" with these particles. Unintentional and/or uncontrolled ND pollution of the environment poses a new challenge for all organisms inhabiting it, particularly during multigenerational exposure.


Assuntos
Nanodiamantes , Animais , Antioxidantes/metabolismo , Defensinas/metabolismo , Defensinas/farmacologia , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Longevidade , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
6.
Int J Mol Sci ; 24(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36613733

RESUMO

The rising applicability of graphene oxide (GO) should be preceded by detailed tests confirming its safety and lack of toxicity. Sensitivity to GO of immature, or with different survival strategy, individuals has not been studied so far. Therefore, in the present research, we focused on the GO genotoxic effects, examining selected parameters of DNA damage (total DNA damage, double-strand breaks-DSB, 8-hydroxy-2'-deoxyguanosine-8-OHdG, abasic site-AP sites), DNA damage response parameters, and global methylation in the model organism Acheta domesticus. Special attention was paid to various life stages and lifespans, using wild (H), and selected for longevity (D) strains. DNA damage was significantly affected by stage and/or strain and GO exposure. Larvae and young imago were generally more sensitive than adults, revealing more severe DNA damage. Especially in the earlier life stages, the D strain reacted more intensely/inversely than the H strain. In contrast, DNA damage response parameters were not significantly related to stage and/or strain and GO exposure. Stage-dependent DNA damage, especially DSB and 8-OHdG, with the simultaneous lack or subtle activation of DNA damage response parameters, may result from the general life strategy of insects. Predominantly fast-living and fast-breeding organisms can minimize energy-demanding repair mechanisms.


Assuntos
Grafite , Longevidade , Humanos , Dano ao DNA , Grafite/toxicidade , 8-Hidroxi-2'-Desoxiguanosina , Reparo do DNA
7.
Nutrients ; 13(10)2021 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-34684637

RESUMO

The liver plays a central role in glucose and fatty acid metabolism and acts as an endocrine organ that secretes hepatokines with diverse systemic effects. The study aimed to examine the influence of duodenojejunal omega switch (DJOS) bariatric surgery in combination with different diets on glucose administration parameters and hepatokines levels. After 8 weeks on high fat, high sugar diet (HFS) or control diets (CD), Sprague-Dawley rats underwent DJOS or SHAM (control) surgery. For the next 8 weeks after the surgery, half of DJOS and SHAM-operated animals were kept on the same diet as before, and half had a diet change. The oral glucose tolerance test (OGTT) was performed three times: 8 weeks before and 4 and 8 weeks after surgery. Fetuin-B, growth differentiation factor-15 (GDF-15), pentraxin 3 (PTX3) plasma levels were analyzed. DJOS surgery had a beneficial effect on oral glucose tolerance test (OGTT) results and the area under the curve (AUCOGTT). The OGTT results depended on the time elapsed after the surgery, the type of diet used, the surgery performed, and the interaction between these factors. DJOS bariatric surgery reduced fetuin-B and GDF15 plasma levels. Interaction between the type of surgery performed and diet used influenced the fetuin-B and PTX-3 plasma levels. A dietary regime is essential to achieve therapeutic and clinical goals after bariatric surgery.


Assuntos
Cirurgia Bariátrica/métodos , Proteína C-Reativa/metabolismo , Fetuína-B/metabolismo , Fator 15 de Diferenciação de Crescimento/sangue , Obesidade/sangue , Componente Amiloide P Sérico/metabolismo , Animais , Glicemia/metabolismo , Dieta da Carga de Carboidratos/efeitos adversos , Dieta Hiperlipídica/efeitos adversos , Açúcares da Dieta/efeitos adversos , Modelos Animais de Doenças , Duodeno/cirurgia , Teste de Tolerância a Glucose , Jejuno/cirurgia , Fígado/metabolismo , Obesidade/etiologia , Obesidade/cirurgia , Ratos , Ratos Sprague-Dawley
8.
Sci Rep ; 11(1): 21147, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34707140

RESUMO

Tryptophan (TRP) is one of the essential amino acids in the animal body. Its exogenicity and low concentrations mean that it can be regarded as one of the key regulatory molecules at the cellular as well as physiological level. It has been shown to have a number of essential functions, such as in the production of other biologically active molecules. The main objective of this project was to investigate the effects of a high monosaccharide diet (HMD) on a hemimetabolic insect-house cricket (Acheta domesticus) and a mutant strain with impaired visual pigment synthesis (closely related to the tryptophan and kynurenine (KYN) metabolic pathway)-white eye. This study was aimed at determining the effects of glucose and fructose on cricket development and biochemical composition. A parallel goal was to compare the response of both cricket strains to HMD. ELISA assays indicated dysfunction of the TRP-KYN pathway in white strain insects and an elevated KYN/TRP ratio. Biochemical analyses demonstrated the effects of HMD mainly on fat and glycogen content. A decrease in food intake was also observed in the groups on HMD. However, no changes in imago body weight and water content were observed. The results of the study indicate a stronger response of the white strain to HMD compared to the wild-type strain. At the same time, a stronger detrimental effect of fructose than of glucose was apparent. Sex was found to be a modulating factor in the response to HMD.


Assuntos
Dieta , Gryllidae/metabolismo , Cinurenina/metabolismo , Monossacarídeos/metabolismo , Triptofano/metabolismo , Animais , Feminino , Glicogênio/metabolismo , Gryllidae/genética , Gryllidae/crescimento & desenvolvimento , Masculino , Mutação , Pigmentação/genética
9.
Environ Pollut ; 290: 117996, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34416498

RESUMO

This research was designed to investigate changes that can arise in an invertebrate organism due to stress caused by a strong prooxidant, graphene oxide (GO), and a potent antioxidant, vitamin C. The study aimed to investigate if vitamin C may support convalescence after chronic GO intoxication. We investigated the toxicity of chronic dietary graphene oxide administration in house cricket (Acheta domesticus) types: wild and selected for longevity (with a better developed antioxidant system, conducive to long life). Vitamin C was applied immediately after cessation of graphene oxide intoxication to check if it can support the remedial effect. The condition of cells, DNA stability, catalase activity, and the reproduction potential, measured as the Vitellogenin (Vg) protein expression level, were investigated in control and GO treated groups, recovery groups (-GO), and recovery groups with Vit. C (-GO + Vit.C). In this study vitamin C had no evident remedial effect on the house crickets exposed to graphene oxide. Most probably, the mechanism of vitamin C action, in case of intoxication with nanoparticles, is much more complicated. In the context of the results obtained, it is worth considering whether Vit. C, applied after GO intoxication, causes further disturbance of homeostasis in terms of the cells' redox potential.


Assuntos
Grafite , Gryllidae , Animais , Ácido Ascórbico , Grafite/toxicidade , Longevidade , Estresse Oxidativo
10.
Chemosphere ; 280: 130772, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34162089

RESUMO

The anthropogenic activities may lead to accumulation of graphene oxide (GO) pollution in the environment. Organisms exposed to chronic or multigenerational GO intoxication can present reproduction depletion. Vitellogenin (Vg) has been used as a parameter for evaluating female fertility due to its importance in embryo nutrition. In this study, we used a promising model organism, Acheta domesticus, which was intoxicated with GO in food for three generations. The aim of the study was to investigate the process of Vg synthesis in crickets depending on the exposure time, GO concentration, and age of the females. The results revealed that chronic GO intoxication had adverse effects on the Vg expression pattern. The 1st generation of insects showing low Vg expression was most affected. The 2nd generation of A. domesticus presented a high Vg expression. The last investigated generation seemed to cope with stress caused by GO, and the Vg expression was balanced. We suggest that the epigenetic mechanisms may play a role in the information transfer to the next generations on how to react to the risk factor and keep reproduction at a high rate. We suspect that chronic GO intoxication can disturb the regular formation of the Vg quaternary structure, resulting in consequences for developing an embryo.


Assuntos
Grafite , Vitelogeninas , Feminino , Grafite/toxicidade , Humanos , Proteômica , Reprodução , Vitelogeninas/genética
11.
Environ Pollut ; 268(Pt A): 115366, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33035914

RESUMO

Cadmium as a common environmental stressor may exert highly toxic effects on herbivorous insects. The question was whether possible elevation of an oxidative stress and imbalance of energetic reserves in insects may depend on developmental stage, sex and insect population's multigenerational history of exposure to cadmium. So, the aim of this study was to compare of the development traits, total antioxidant capacity, lipid peroxidation, RSSR to RSH ratio and the concentration of carbohydrates, glycogen, lipids and proteins in whole individuals (larvae or pupae) of Spodoptera exigua originating from two strains: control and selected over 120 generations with sublethal metal concentration (44 Cd mg per dry weight of diet). Generally, the increase of the protein, carbohydrates, glycogen concentration and lipid peroxidation decrease with age of the larvae were found. Revealed cases of a higher mobilisation of carbohydrates and proteins, and changes in total antioxidant capacity or lipid peroxidation, in individuals being under metal exposure, occurred in strain-depended mode. Short-term Cd exposure effect was connected with possible higher engagement of proteins and glycogen in detoxification processes, but also higher concentration of lipid peroxidation. In turn, for long-term Cd exposure effect lower lipids concentration and higher thiols usage seemed to be more specific.


Assuntos
Cádmio , Estresse Oxidativo , Animais , Antioxidantes , Cádmio/toxicidade , Humanos , Larva , Spodoptera
12.
Sci Rep ; 10(1): 21141, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33273657

RESUMO

Autophagy is a natural process that aims to eliminate malfunctioning cell parts, organelles or molecules under physiological conditions. It is also induced in response to infection, starvation or oxidative stress to provide energy in case of an energy deficit. The aim of this 2-dimensional study was to test if, and if so, how, this process depends on the concentration of cadmium in food (with Cd concentrations from 0 to 352 µg of Cd per g of food (dry weight)-D1 dimension) and the history of selection pressure (160 vs 20 generations of exposure to Cd-D2 dimension). For the study, the 5th instar larvae of a unique strain of the moth Spodoptera exigua that was selected for cadmium tolerance for 160 generations (44 µg of Cd per g of food (dry weight)), as well as 20-generation (11, 22 and 44 µg of Cd per g of food (dry weight)) and control strains, were used. Autophagy intensity was measured by means of flow cytometry and compared with life history parameters: survivability and duration of the 3rd larval stage. The highest values of autophagy markers were found in the groups exposed to the highest Cd concentration and corresponded (with a significant correlation coefficient) to an increased development duration or decreased survivorship in the respective groups. In conclusion, autophagy is probably initiated only if any other defense mechanisms, e.g., antioxidative mechanisms, are not efficient. Moreover, in individuals from pre-exposed populations, the intensity of autophagy is lower.


Assuntos
Autofagia/efeitos dos fármacos , Intoxicação por Cádmio/patologia , Cádmio/toxicidade , Spodoptera/efeitos dos fármacos , Animais , Poluentes Ambientais/toxicidade , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Spodoptera/crescimento & desenvolvimento , Spodoptera/fisiologia
13.
Sci Total Environ ; 745: 141048, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32758757

RESUMO

Human activity is a serious cause of extensive changes in the environment and a constant reason for the emergence of new stress factors. Thus, to survive and reproduce, organisms must constantly implement a program of adaptation to continuously changing conditions. The research presented here is focused on tracking slow changes occurring in Spodoptera exigua (Lepidoptera: Noctuidae) caused by multigenerational exposure to sub-lethal cadmium doses. The insects received food containing cadmium at concentrations of 5, 11, 22 and 44 µg per g of dry mass of food. The level of DNA stability was monitored by a comet assay in subsequent generations up to the 36th generation. In the first three generations, the level of DNA damage was high, especially in the groups receiving higher doses of cadmium in the diet. In the fourth generation, a significant reduction in the level of DNA damage was observed, which could indicate that the desired stability of the genome was achieved. Surprisingly, however, in subsequent generations, an alternating increase and decrease was found in DNA stability. The observed cycles of changing DNA stability were longer lasting in insects consuming food with a lower Cd content. Thus, a transient reduction in genome stability can be perceived as an opportunity to increase the number of genotypes that undergo selection. This phenomenon occurs faster if the severity of the stress factor is high but is low enough to allow the population to survive.


Assuntos
Cádmio/toxicidade , Dano ao DNA , Animais , Instabilidade Genômica , Humanos , Larva , Spodoptera/genética
14.
Sci Total Environ ; 737: 140274, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32783857

RESUMO

The increased use of graphene oxide (GO) raises worrisome questions regarding its possible threat to various ecosystems. Invertebrates represent valuable organisms for environmental studies. The lifespan can influence the ability to cope with toxins, especially those that act via oxidative stress. Two strains of Acheta domesticus, which are selected for longevity, were tested. The main aim was to investigate how GO, when administrated in food, affects: the condition of cells, DNA stability, ROS generation and the reproduction potential (the Vitellogenin (Vg) protein expression). The "recovery effect" - after removing GO from the diet for 15 days - was also measured. The results revealed different responses to GO in the wild (H) and long-living (D) strains. The D strain had a higher catalase activity compared to the H strain on the 25th day of the imago stage. Removing GO from the food resulted in a decrease in the catalase activity to the level of the control. On the 5th day of the imago stage, the H strain had a higher cell mortality than the D strain in the GO-intoxicated groups. There was more DNA damage in the H strain compared to the long-living strain. A remedial effect was seen after the GO was removed from the diet. The total Vg protein expression was higher in the H strain and lower in the D strain. The results indicated a GO concentration-dependent outcome. In both strains, removing the GO from the food led to a high Vg expression. The Vg expression after GO treatment, particularly translation and post-translational processing, should be studied in detail in the future. The D strain of crickets had more specialized mechanisms for maintaining homeostasis than the H strain. Organisms can fight off negative effects of GO, especially when they have systems that are well developed against oxidative stress.


Assuntos
Grafite , Gryllidae , Animais , Catalase , Dano ao DNA , Ecossistema , Nível de Saúde , Longevidade , Estresse Oxidativo , Vitelogeninas/genética
15.
PeerJ ; 7: e7399, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31565545

RESUMO

The middle region of the digestive system, the midgut of freshwater shrimp Neocaridina davidi is composed of a tube-shaped intestine and the hepatopancreas formed by numerous caeca. Two types of cells have been distinguished in the intestine, the digestive cells (D-cells) and regenerative cells (R-cells). The hepatopancreatic tubules have three distinct zones distinguished along the length of each tubule-the distal zone with R-cells, the medial zone with differentiating cells, and the proximal zone with F-cells (fibrillar cells) and B-cells (storage cells). Fasting causes activation of cell death, a reduction in the amount of reserve material, and changes in the mitochondrial membrane potential. However, here we present how the concentration of ROS changes according to different periods of fasting and whether re-feeding causes their decrease. In addition, the activation/deactivation of mitochondrial superoxide dismutase (MnSOD) was analyzed. The freshwater shrimps Neocaridina davidi (Crustacea, Malacostraca, Decapoda) were divided into experimental groups: animals starved for 14 days, animals re-fed for 4, 7, and 14 days. The material was examined using the confocal microscope and the flow cytometry. Our studies have shown that long-term starvation increases the concentration of free radicals and MnSOD concentration in the intestine and hepatopancreas, while return to feeding causes their decrease in both organs examined. Therefore, we concluded that a distinct relationship between MnSOD concentration, ROS activation, cell death activation and changes in the mitochondrial membrane potential occurred.

16.
Chemosphere ; 235: 785-793, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31280047

RESUMO

The aim of this study was to investigate whether zinc supplementation modulates cadmium toxicity in the beet armyworm Spodoptera exigua selected for 135 generations towards cadmium tolerance. To achieve this, larvae originating from three laboratory populations of S. exigua (control strain - C; cadmium-intoxicated for 135 generations strain - Cd, and control strain intoxicated with Cd for 1 generation - CCd) were additionally exposed to zinc in three concentrations (Zn1, 400 µg Zn·g-1 dry mass of food; Zn2; 200 µg Zn·g-1 dry mass of food; Zn3, 100 µg Zn·g-1 dry mass of food). As the markers of toxicity, a life history traits (the duration of L4 and L5 stages), cellular (DNA damage indices) and biochemical parameters (ADP/ATP ratio and ATP and HSP70 concentrations) were chosen. The duration of larval stages of Zn supplemented larvae was prolonged, while cellular and biochemical indicators, in general, appeared to be lower in comparison to the insects from respective reference groups in each laboratory populations. Moreover, the range of the differences depended on zinc concentration in food. We can suspect that zinc supplementation contributed to the protection of S. exigua individuals against negative effects of cadmium intoxication, probably at the cost of growth rate. Significant differences in the response pattern between insects from different laboratory populations indicate that the influence of additional stress factors is dependent on the overall condition of animals and their previous adaptation to other stressors.


Assuntos
Adaptação Fisiológica , Cádmio/toxicidade , Poluentes do Solo/toxicidade , Spodoptera/fisiologia , Zinco/metabolismo , Animais , Antioxidantes/metabolismo , Beta vulgaris , Tolerância a Medicamentos , Proteínas de Choque Térmico HSP70 , Larva/efeitos dos fármacos , Spodoptera/efeitos dos fármacos
17.
Ecotoxicol Environ Saf ; 178: 1-8, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30980963

RESUMO

The aim of this study was to investigate whether the cadmium tolerance developed in the beet armyworm Spodoptera exigua selected for over 150 generations may be related to synthesis of the stress proteins metallothioneins (Mts) and 70 kDa heat shock proteins (HSP70). To achieve this, six S. exigua strains (control, k), 150-generation Cd exposure strain (cd), and four 18-generation Cd exposure strains differing in Cd concentration (cd44, cd22, cd11, cd5) were reared. Stress protein level was measured in the midgut of the 5th larval stage after 1-6, 12 and 18 generations. Cd contents was measured in the pupae. Unlike Cd concentration, which depended on metal contents in food but was not generation-dependent, the pattern of Mts and HSP70 concentrations changed in experimental strains from generation to generation. Stress protein levels in the insects exposed to the highest Cd concentration (the same as in the 150-generation Cd exposure strain), initially higher than in the control strain, after the 12th generation did not differ from the level measured in the control strains. It seems therefore that stress proteins play a protective role in insects of lower tolerance to cadmium. The tolerance developed during multigenerational exposure probably relies on mechanisms other than Mt and HSP70 synthesis.


Assuntos
Cádmio/toxicidade , Tolerância a Medicamentos , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Metalotioneína/metabolismo , Poluentes do Solo/toxicidade , Spodoptera/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Beta vulgaris/crescimento & desenvolvimento , Cádmio/metabolismo , Larva/efeitos dos fármacos , Larva/metabolismo , Modelos Teóricos , Pupa/efeitos dos fármacos , Pupa/metabolismo , Poluentes do Solo/metabolismo , Spodoptera/metabolismo
18.
Ecotoxicology ; 26(10): 1408-1418, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29058177

RESUMO

Long lasting exposure of animals to stressing factor may lead to the selection of population able to cope with the stressor at lower cost than unexposed individuals. The aim of this study was to assess whether 130-generational selection of a beet armyworm to cadmium in food might have induced tolerance also to other stressors. The potential tolerance was assessed by means of unspecific stress markers: HSP70 concentration, DNA damage level, and energy budget indices in L5 larval instars of beet armyworm. The animals originated from Cd-exposed and control strains exposed additionally in a short-term experiment to high/low temperature or pesticide-spinosad. The application of the additional stressors caused, in general, an increase in the levels of studied parameters, in a strain-dependent manner. The most significant increase was found in HSP70 level in the individuals from the Cd-strain exposed to various spinosad concentration. Therefore, multigenerational contact with cadmium caused several changes that enable the insect to survive under a chronic stress, preparing the organism to the contact with an additional, new stressor. This relationship may be described as a sort of cross tolerance. This may, possibly, increase the probability of population survivorship and, at the same time, decrease the efficiency of pesticide-based plant protection efforts.


Assuntos
Adaptação Fisiológica/fisiologia , Beta vulgaris/fisiologia , Cádmio/toxicidade , Poluentes do Solo/toxicidade , Spodoptera/fisiologia , Animais , Proteínas de Choque Térmico HSP70/metabolismo , Larva
19.
PLoS One ; 11(12): e0167371, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27907095

RESUMO

In the case of the pests inhabiting metal polluted or fields where the use of pesticides is common, a natural selection of resistant individuals can occur. This may pose serious problems for humans, agriculture, as well as the economies of many countries. In this study, the hypothesis that multigenerational (120 generations) exposure to cadmium of a beet armyworm population could be a selecting factor toward a more efficient DNA protection was verified. The hemocytes of individuals from two culture strains (control and Cd-exposed) were treated with H2O2 (a DNA-damaging agent) or PBS (reference). The level of DNA damage was assessed using the Comet assay immediately and 5, 15 and 30 min. after the treatment. The immediate result of the contact with H2O2 was that the level of DNA damage in the hemocytes of the insects from both strains increased significantly. However, in the cells of the Cd-exposed individuals, the level of DNA damage decreased over time, while in the cells from the control insects it remained at the same level with no evidence of repair. These results suggest that efficient defense mechanisms may exist in the cells of insects that have prolonged contact with cadmium. Some evolutionary and trade-off aspects of the phenomenon are discussed. In a wider context, comparing the results obtained in the laboratory with field studies may be beneficial for understanding basic mechanisms of the resistance of an organism. To summarize, the high potential for the repair of DNA damage that was observed in the insects from the cadmium strain may confirm the hypothesis that multigenerational exposure to that metal may possibly contribute to the selection of insects that have a wider tolerance to oxidative stress. However, our investigations of polymorphism using AFLP did not reveal differences between the two main insect strains.


Assuntos
Evolução Biológica , Cádmio/toxicidade , Dano ao DNA/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Insetos/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Beta vulgaris/parasitologia , Epigênese Genética/efeitos dos fármacos , Hemócitos/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/farmacologia , Insetos/genética , Larva/efeitos dos fármacos , Larva/genética , Estresse Oxidativo/efeitos dos fármacos
20.
J Insect Sci ; 14: 152, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25399425

RESUMO

The phenomenon of metal hyperaccumulation by plants is often explained by a pathogen or herbivore defense hypothesis. However, some insects feeding on metal hyperaccumulating plants are adapted to the high level of metals in plant tissues. Former studies on species that feed on the leaves of Berkheya coddii Roessler 1958 (Asteraceae), a nickel-hyperaccumulating plant, demonstrated several protective mechanisms involved in internal distribution, immobilization, and elimination of Ni from the midgut and Malpighian tubules. These species are mainly coleopterans, including the lady beetle, Epilachna nylanderi (Mulsant 1850) (Coleoptera: Coccinellidae), collected from the ultramafic ecosystem near Barberton in South Africa. By performing particle-induced X-ray emission microanalysis elemental microanalysis (PIXE), this study examined whether Ni may be harmful to internal body systems that decide on insect reactivity (central nervous system [CNS]), their reproduction, and the relationships between Ni and other micronutrients. Data on elemental distribution of nine selected elements in target organs of E. nylanderi were compared with the existing data for other insect species adapted to the excess of metals. Micro-PIXE maps of seven regions of the CNS showed Ni mainly in the neural connectives, while cerebral ganglia were better protected. Concentrations of other bivalent metals were lower than those of Ni. Testis, compared with other reproductive organs, showed low amounts of Ni. Zn was effectively regulated at physiological dietary levels. In insects exposed to excess dietary Zn, it was also accumulated in the reproductive organs. Comparison of E. nylanderii with other insects that ingest hyperaccumulating plants, especially chrysomelid Chrysolina clathrata (Clark) (Coleoptera: Chrysomelidae), showed lower protection of the CNS and reproductive organs.


Assuntos
Asteraceae , Besouros/metabolismo , Herbivoria , Micronutrientes/metabolismo , Níquel/metabolismo , Animais , Sistema Nervoso Central/metabolismo , Genitália/metabolismo , Masculino , Espectrometria por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA