Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Behav Brain Sci ; 46: e410, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38054339

RESUMO

Pigs can't fly. Any person buying a pig should understand this - it would be absurd to be upset that they can't fly or play poker. But pigs are amazing creatures and can do many interesting and useful things.


Assuntos
Humanos , Suínos , Animais
2.
J Neurosci ; 43(22): 4144-4161, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37127366

RESUMO

Midlevel features, such as contour and texture, provide a computational link between low- and high-level visual representations. Although the nature of midlevel representations in the brain is not fully understood, past work has suggested a texture statistics model, called the P-S model (Portilla and Simoncelli, 2000), is a candidate for predicting neural responses in areas V1-V4 as well as human behavioral data. However, it is not currently known how well this model accounts for the responses of higher visual cortex to natural scene images. To examine this, we constructed single-voxel encoding models based on P-S statistics and fit the models to fMRI data from human subjects (both sexes) from the Natural Scenes Dataset (Allen et al., 2022). We demonstrate that the texture statistics encoding model can predict the held-out responses of individual voxels in early retinotopic areas and higher-level category-selective areas. The ability of the model to reliably predict signal in higher visual cortex suggests that the representation of texture statistics features is widespread throughout the brain. Furthermore, using variance partitioning analyses, we identify which features are most uniquely predictive of brain responses and show that the contributions of higher-order texture features increase from early areas to higher areas on the ventral and lateral surfaces. We also demonstrate that patterns of sensitivity to texture statistics can be used to recover broad organizational axes within visual cortex, including dimensions that capture semantic image content. These results provide a key step forward in characterizing how midlevel feature representations emerge hierarchically across the visual system.SIGNIFICANCE STATEMENT Intermediate visual features, like texture, play an important role in cortical computations and may contribute to tasks like object and scene recognition. Here, we used a texture model proposed in past work to construct encoding models that predict the responses of neural populations in human visual cortex (measured with fMRI) to natural scene stimuli. We show that responses of neural populations at multiple levels of the visual system can be predicted by this model, and that the model is able to reveal an increase in the complexity of feature representations from early retinotopic cortex to higher areas of ventral and lateral visual cortex. These results support the idea that texture-like representations may play a broad underlying role in visual processing.


Assuntos
Reconhecimento Visual de Modelos , Córtex Visual , Masculino , Feminino , Humanos , Reconhecimento Visual de Modelos/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Encéfalo , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Estimulação Luminosa/métodos
3.
J Vis ; 23(4): 8, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37103010

RESUMO

Representations of visual and semantic information can overlap in human visual cortex, with the same neural populations exhibiting sensitivity to low-level features (orientation, spatial frequency, retinotopic position) and high-level semantic categories (faces, scenes). It has been hypothesized that this relationship between low-level visual and high-level category neural selectivity reflects natural scene statistics, such that neurons in a given category-selective region are tuned for low-level features or spatial positions that are diagnostic of the region's preferred category. To address the generality of this "natural scene statistics" hypothesis, as well as how well it can account for responses to complex naturalistic images across visual cortex, we performed two complementary analyses. First, across a large set of rich natural scene images, we demonstrated reliable associations between low-level (Gabor) features and high-level semantic categories (faces, buildings, animate/inanimate objects, small/large objects, indoor/outdoor scenes), with these relationships varying spatially across the visual field. Second, we used a large-scale functional MRI dataset (the Natural Scenes Dataset) and a voxelwise forward encoding model to estimate the feature and spatial selectivity of neural populations throughout visual cortex. We found that voxels in category-selective visual regions exhibit systematic biases in their feature and spatial selectivity, which are consistent with their hypothesized roles in category processing. We further showed that these low-level tuning biases are not driven by selectivity for categories themselves. Together, our results are consistent with a framework in which low-level feature selectivity contributes to the computation of high-level semantic category information in the brain.


Assuntos
Semântica , Córtex Visual , Humanos , Mapeamento Encefálico , Estimulação Luminosa/métodos , Córtex Visual/diagnóstico por imagem , Córtex Visual/fisiologia , Imageamento por Ressonância Magnética , Viés , Reconhecimento Visual de Modelos/fisiologia
4.
Commun Biol ; 6(1): 175, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792693

RESUMO

Visual cortex contains regions of selectivity for domains of ecological importance. Food is an evolutionarily critical category whose visual heterogeneity may make the identification of selectivity more challenging. We investigate neural responsiveness to food using natural images combined with large-scale human fMRI. Leveraging the improved sensitivity of modern designs and statistical analyses, we identify two food-selective regions in the ventral visual cortex. Our results are robust across 8 subjects from the Natural Scenes Dataset (NSD), multiple independent image sets and multiple analysis methods. We then test our findings of food selectivity in an fMRI "localizer" using grayscale food images. These independent results confirm the existence of food selectivity in ventral visual cortex and help illuminate why earlier studies may have failed to do so. Our identification of food-selective regions stands alongside prior findings of functional selectivity and adds to our understanding of the organization of knowledge within the human visual system.


Assuntos
Reconhecimento Visual de Modelos , Córtex Visual , Humanos , Mapeamento Encefálico/métodos , Estimulação Luminosa/métodos , Córtex Visual/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
5.
PLoS One ; 18(1): e0280145, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36608003

RESUMO

Humans are born with very low contrast sensitivity, meaning that inputs to the infant visual system are both blurry and low contrast. Is this solely a byproduct of maturational processes or is there a functional advantage for beginning life with poor visual acuity? We addressed the impact of poor vision during early learning by exploring whether reduced visual acuity facilitated the acquisition of basic-level categories in a convolutional neural network model (CNN), as well as whether any such benefit transferred to subordinate-level category learning. Using the ecoset dataset to simulate basic-level category learning, we manipulated model training curricula along three dimensions: presence of blurred inputs early in training, rate of blur reduction over time, and grayscale versus color inputs. First, a training regime where blur was initially high and was gradually reduced over time-as in human development-improved basic-level categorization performance in a CNN relative to a regime in which non-blurred inputs were used throughout training. Second, when basic-level models were fine-tuned on a task including both basic-level and subordinate-level categories (using the ImageNet dataset), models initially trained with blurred inputs showed a greater performance benefit as compared to models trained exclusively on non-blurred inputs, suggesting that the benefit of blurring generalized from basic-level to subordinate-level categorization. Third, analogous to the low sensitivity to color that infants experience during the first 4-6 months of development, these advantages were observed only when grayscale images were used as inputs. We conclude that poor visual acuity in human newborns may confer functional advantages, including, as demonstrated here, more rapid and accurate acquisition of visual object categories at multiple levels.


Assuntos
Redes Neurais de Computação , Aprendizagem Espacial , Recém-Nascido , Lactente , Humanos , Tempo
6.
Elife ; 112022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36444984

RESUMO

Advances in artificial intelligence have inspired a paradigm shift in human neuroscience, yielding large-scale functional magnetic resonance imaging (fMRI) datasets that provide high-resolution brain responses to thousands of naturalistic visual stimuli. Because such experiments necessarily involve brief stimulus durations and few repetitions of each stimulus, achieving sufficient signal-to-noise ratio can be a major challenge. We address this challenge by introducing GLMsingle, a scalable, user-friendly toolbox available in MATLAB and Python that enables accurate estimation of single-trial fMRI responses (glmsingle.org). Requiring only fMRI time-series data and a design matrix as inputs, GLMsingle integrates three techniques for improving the accuracy of trial-wise general linear model (GLM) beta estimates. First, for each voxel, a custom hemodynamic response function (HRF) is identified from a library of candidate functions. Second, cross-validation is used to derive a set of noise regressors from voxels unrelated to the experiment. Third, to improve the stability of beta estimates for closely spaced trials, betas are regularized on a voxel-wise basis using ridge regression. Applying GLMsingle to the Natural Scenes Dataset and BOLD5000, we find that GLMsingle substantially improves the reliability of beta estimates across visually-responsive cortex in all subjects. Comparable improvements in reliability are also observed in a smaller-scale auditory dataset from the StudyForrest experiment. These improvements translate into tangible benefits for higher-level analyses relevant to systems and cognitive neuroscience. We demonstrate that GLMsingle: (i) helps decorrelate response estimates between trials nearby in time; (ii) enhances representational similarity between subjects within and across datasets; and (iii) boosts one-versus-many decoding of visual stimuli. GLMsingle is a publicly available tool that can significantly improve the quality of past, present, and future neuroimaging datasets sampling brain activity across many experimental conditions.


Assuntos
Inteligência Artificial , Imageamento por Ressonância Magnética , Humanos , Reprodutibilidade dos Testes , Neuroimagem , Razão Sinal-Ruído
7.
J Cogn Neurosci ; 33(5): 933-945, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34449848

RESUMO

Rapid visual perception is often viewed as a bottom-up process. Category-preferred neural regions are often characterized as automatic, default processing mechanisms for visual inputs of their categorical preference. To explore the sensitivity of such regions to top-down information, we examined three scene-preferring brain regions, the occipital place area (OPA), the parahippocampal place area (PPA), and the retrosplenial complex (RSC), and tested whether the processing of outdoor scenes is influenced by the functional contexts in which they are seen. Context was manipulated by presenting real-world landscape images as if being viewed through a window or within a picture frame-manipulations that do not affect scene content but do affect one's functional knowledge regarding the scene. This manipulation influences neural scene processing (as measured by fMRI): The OPA and the PPA exhibited greater neural activity when participants viewed images as if through a window as compared with within a picture frame, whereas the RSC did not show this difference. In a separate behavioral experiment, functional context affected scene memory in predictable directions (boundary extension). Our interpretation is that the window context denotes three-dimensionality, therefore rendering the perceptual experience of viewing landscapes as more realistic. Conversely, the frame context denotes a 2-D image. As such, more spatially biased scene representations in the OPA and the PPA are influenced by differences in top-down, perceptual expectations generated from context. In contrast, more semantically biased scene representations in the RSC are likely to be less affected by top-down signals that carry information about the physical layout of a scene.


Assuntos
Mapeamento Encefálico , Percepção Visual , Encéfalo/diagnóstico por imagem , Giro do Cíngulo , Humanos , Imageamento por Ressonância Magnética , Reconhecimento Visual de Modelos
8.
Brain Behav ; 9(10): e01373, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31560175

RESUMO

INTRODUCTION: How do multiple sources of information interact to form mental representations of object categories? It is commonly held that object categories reflect the integration of perceptual features and semantic/knowledge-based features. To explore the relative contributions of these two sources of information, we used functional magnetic resonance imaging (fMRI) to identify regions involved in the representation object categories with shared visual and/or semantic features. METHODS: Participants (N = 20) viewed a series of objects that varied in their degree of visual and semantic overlap in the MRI scanner. We used a blocked adaptation design to identify sensitivity to visual and semantic features in a priori visual processing regions and in a distributed network of object processing regions with an exploratory whole-brain analysis. RESULTS: Somewhat surprisingly, within higher-order visual processing regions-specifically lateral occipital cortex (LOC)-we did not obtain any difference in neural adaptation for shared visual versus semantic category membership. More broadly, both visual and semantic information affected a distributed network of independently identified category-selective regions. Adaptation was seen a whole-brain network of processing regions in response to visual similarity and semantic similarity; specifically, the angular gyrus (AnG) adapted to visual similarity and the dorsomedial prefrontal cortex (DMPFC) adapted to both visual and semantic similarity. CONCLUSIONS: Our findings suggest that perceptual features help organize mental categories throughout the object processing hierarchy. Most notably, visual similarity also influenced adaptation in nonvisual brain regions (i.e., AnG and DMPFC). We conclude that category-relevant visual features are maintained in higher-order conceptual representations and visual information plays an important role in both the acquisition and neural representation of conceptual object categories.


Assuntos
Lobo Occipital/diagnóstico por imagem , Reconhecimento Visual de Modelos/fisiologia , Córtex Pré-Frontal/diagnóstico por imagem , Semântica , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico , Feminino , Neuroimagem Funcional , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Lobo Occipital/fisiologia , Córtex Pré-Frontal/fisiologia , Percepção Visual/fisiologia , Adulto Jovem
9.
Hum Brain Mapp ; 40(14): 4213-4238, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31231899

RESUMO

The human visual cortex is organized in a hierarchical manner. Although previous evidence supporting this hypothesis has been accumulated, specific details regarding the spatiotemporal information flow remain open. Here we present detailed spatiotemporal correlation profiles of neural activity with low-level and high-level features derived from an eight-layer neural network pretrained for object recognition. These correlation profiles indicate an early-to-late shift from low-level features to high-level features and from low-level regions to higher-level regions along the visual hierarchy, consistent with feedforward information flow. Additionally, we computed three sets of features from the low- and high-level features provided by the neural network: object-category-relevant low-level features (the common components between low-level and high-level features), low-level features roughly orthogonal to high-level features (the residual Layer 1 features), and unique high-level features that were roughly orthogonal to low-level features (the residual Layer 7 features). Contrasting the correlation effects of the common components and the residual Layer 1 features, we observed that the early visual cortex (EVC) exhibited a similar amount of correlation with the two feature sets early in time, but in a later time window, the EVC exhibited a higher and longer correlation effect with the common components (i.e., the low-level object-category-relevant features) than with the low-level residual features-an effect unlikely to arise from purely feedforward information flow. Overall, our results indicate that non-feedforward processes, for example, top-down influences from mental representations of categories, may facilitate differentiation between these two types of low-level features within the EVC.


Assuntos
Modelos Neurológicos , Redes Neurais de Computação , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
10.
Sci Data ; 6(1): 49, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-31061383

RESUMO

Vision science, particularly machine vision, has been revolutionized by introducing large-scale image datasets and statistical learning approaches. Yet, human neuroimaging studies of visual perception still rely on small numbers of images (around 100) due to time-constrained experimental procedures. To apply statistical learning approaches that include neuroscience, the number of images used in neuroimaging must be significantly increased. We present BOLD5000, a human functional MRI (fMRI) study that includes almost 5,000 distinct images depicting real-world scenes. Beyond dramatically increasing image dataset size relative to prior fMRI studies, BOLD5000 also accounts for image diversity, overlapping with standard computer vision datasets by incorporating images from the Scene UNderstanding (SUN), Common Objects in Context (COCO), and ImageNet datasets. The scale and diversity of these image datasets, combined with a slow event-related fMRI design, enables fine-grained exploration into the neural representation of a wide range of visual features, categories, and semantics. Concurrently, BOLD5000 brings us closer to realizing Marr's dream of a singular vision science-the intertwined study of biological and computer vision.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Percepção Visual , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Masculino , Adulto Jovem
11.
Sci Rep ; 7(1): 16248, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-29176609

RESUMO

Standard human EEG systems based on spatial Nyquist estimates suggest that 20-30 mm electrode spacing suffices to capture neural signals on the scalp, but recent studies posit that increasing sensor density can provide higher resolution neural information. Here, we compared "super-Nyquist" density EEG ("SND") with Nyquist density ("ND") arrays for assessing the spatiotemporal aspects of early visual processing. EEG was measured from 128 electrodes arranged over occipitotemporal brain regions (14 mm spacing) while participants viewed flickering checkerboard stimuli. Analyses compared SND with ND-equivalent subsets of the same electrodes. Frequency-tagged stimuli were classified more accurately with SND than ND arrays in both the time and the frequency domains. Representational similarity analysis revealed that a computational model of V1 correlated more highly with the SND than the ND array. Overall, SND EEG captured more neural information from visual cortex, arguing for increased development of this approach in basic and translational neuroscience.


Assuntos
Eletroencefalografia/métodos , Percepção Visual , Eletroencefalografia/normas , Feminino , Humanos , Sensibilidade e Especificidade , Córtex Visual/fisiologia
12.
J Vis ; 17(6): 1, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28570739

RESUMO

Humans are experts at face individuation. Although previous work has identified a network of face-sensitive regions and some of the temporal signatures of face processing, as yet, we do not have a clear understanding of how such face-sensitive regions support learning at different time points. To study the joint spatio-temporal neural basis of face learning, we trained subjects to categorize two groups of novel faces and recorded their neural responses using magnetoencephalography (MEG) throughout learning. A regression analysis of neural responses in face-sensitive regions against behavioral learning curves revealed significant correlations with learning in the majority of the face-sensitive regions in the face network, mostly between 150-250 ms, but also after 300 ms. However, the effect was smaller in nonventral regions (within the superior temporal areas and prefrontal cortex) than that in the ventral regions (within the inferior occipital gyri (IOG), midfusiform gyri (mFUS) and anterior temporal lobes). A multivariate discriminant analysis also revealed that IOG and mFUS, which showed strong correlation effects with learning, exhibited significant discriminability between the two face categories at different time points both between 150-250 ms and after 300 ms. In contrast, the nonventral face-sensitive regions, where correlation effects with learning were smaller, did exhibit some significant discriminability, but mainly after 300 ms. In sum, our findings indicate that early and recurring temporal components arising from ventral face-sensitive regions are critically involved in learning new faces.


Assuntos
Córtex Cerebral/fisiologia , Reconhecimento Facial/fisiologia , Aprendizagem/fisiologia , Lobo Occipital/fisiologia , Lobo Temporal/fisiologia , Adulto , Mapeamento Encefálico , Face/fisiologia , Feminino , Humanos , Magnetoencefalografia , Masculino , Adulto Jovem
13.
PLoS One ; 11(4): e0127522, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27119345

RESUMO

Offline processing has been shown to strengthen memory traces and enhance learning in the absence of conscious rehearsal or awareness. Here we evaluate whether a brief, two-minute offline processing period can boost associative learning and test a memory reactivation account for these offline processing effects. After encoding paired associates, subjects either completed a distractor task for two minutes or were immediately tested for memory of the pairs in a counterbalanced, within-subjects functional magnetic resonance imaging study. Results showed that brief, awake, offline processing improves memory for associate pairs. Moreover, multi-voxel pattern analysis of the neuroimaging data suggested reactivation of encoded memory representations in dorsolateral prefrontal cortex during offline processing. These results signify the first demonstration of awake, active, offline enhancement of associative memory and suggest that such enhancement is accompanied by the offline reactivation of encoded memory representations.


Assuntos
Aprendizagem por Associação/fisiologia , Conscientização/fisiologia , Memória/fisiologia , Córtex Pré-Frontal/fisiologia , Adolescente , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Tempo de Reação/fisiologia , Adulto Jovem
14.
Neuroimage ; 133: 529-548, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26973168

RESUMO

The properties utilized by visual object perception in the mid- and high-level ventral visual pathway are poorly understood. To better establish and explore possible models of these properties, we adopt a data-driven approach in which we repeatedly interrogate neural units using functional Magnetic Resonance Imaging (fMRI) to establish each unit's image selectivity. This approach to imaging necessitates a search through a broad space of stimulus properties using a limited number of samples. To more quickly identify the complex visual features underlying human cortical object perception, we implemented a new functional magnetic resonance imaging protocol in which visual stimuli are selected in real-time based on BOLD responses to recently shown images. Two variations of this protocol were developed, one relying on natural object stimuli and a second based on synthetic object stimuli, both embedded in feature spaces based on the complex visual properties of the objects. During fMRI scanning, we continuously controlled stimulus selection in the context of a real-time search through these image spaces in order to maximize neural responses across pre-determined 1cm(3) rain regions. Elsewhere we have reported the patterns of cortical selectivity revealed by this approach (Leeds et al., 2014). In contrast, here our objective is to present more detailed methods and explore the technical and biological factors influencing the behavior of our real-time stimulus search. We observe that: 1) Searches converged more reliably when exploring a more precisely parameterized space of synthetic objects; 2) real-time estimation of cortical responses to stimuli is reasonably consistent; 3) search behavior was acceptably robust to delays in stimulus displays and subject motion effects. Overall, our results indicate that real-time fMRI methods may provide a valuable platform for continuing study of localized neural selectivity, both for visual object representation and beyond.


Assuntos
Biorretroalimentação Psicológica/métodos , Mapeamento Encefálico/métodos , Reconhecimento Visual de Modelos/fisiologia , Estimulação Luminosa/métodos , Interface Usuário-Computador , Córtex Visual/fisiologia , Biorretroalimentação Psicológica/fisiologia , Sistemas Computacionais , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Adulto Jovem
15.
Artigo em Inglês | MEDLINE | ID: mdl-30246177

RESUMO

Magnetoencephalography (MEG) has a high temporal resolution well-suited for studying perceptual learning. However, to identify where learning happens in the brain, one needs to apply source localization techniques to project MEG sensor data into brain space. Previous source localization methods, such as the short-time Fourier transform (STFT) method by Gramfort et al.([6]) produced intriguing results, but they were not designed to incorporate trial-by-trial learning effects. Here we modify the approach in [6] to produce an STFT-based source localization method (STFT-R) that includes an additional regression of the STFT components on covariates such as the behavioral learning curve. We also exploit a hierarchical L21 penalty to induce structured sparsity of STFT components and to emphasize signals from regions of interest (ROIs) that are selected according to prior knowledge. In reconstructing the ROI source signals from simulated data, STFT-R achieved smaller errors than a two-step method using the popular minimum-norm estimate (MNE), and in a real-world human learning experiment, STFT-R yielded more interpretable results about what time-frequency components of the ROI signals were correlated with learning.

16.
Annu Rev Vis Sci ; 2: 377-396, 2016 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-28532357

RESUMO

How do we recognize objects despite changes in their appearance? The past three decades have been witness to intense debates regarding both whether objects are encoded invariantly with respect to viewing conditions and whether specialized, separable mechanisms are used for the recognition of different object categories. We argue that such dichotomous debates ask the wrong question. Much more important is the nature of object representations: What are features that enable invariance or differential processing between categories? Although the nature of object features is still an unanswered question, new methods for connecting data to models show significant potential for helping us to better understand neural codes for objects. Most prominently, new approaches to analyzing data from functional magnetic resonance imaging, including neural decoding and representational similarity analysis, and new computational models of vision, including convolutional neural networks, have enabled a much more nuanced understanding of visual representation. Convolutional neural networks are particularly intriguing as a tool for studying biological vision in that this class of artificial vision systems, based on biologically plausible deep neural networks, exhibits visual recognition capabilities that are approaching those of human observers. As these models improve in their recognition performance, it appears that they also become more effective in predicting and accounting for neural responses in the ventral cortex. Applying these and other deep models to empirical data shows great promise for enabling future progress in the study of visual recognition.


Assuntos
Percepção de Forma/fisiologia , Reconhecimento Psicológico/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Mapeamento Encefálico/métodos , Face , Humanos , Imageamento por Ressonância Magnética/métodos , Modelos Neurológicos , Rede Nervosa/fisiologia , Redes Neurais de Computação , Reconhecimento Visual de Modelos/fisiologia , Vias Visuais/fisiologia
17.
PLoS One ; 10(6): e0128840, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26070142

RESUMO

How are complex visual entities such as scenes represented in the human brain? More concretely, along what visual and semantic dimensions are scenes encoded in memory? One hypothesis is that global spatial properties provide a basis for categorizing the neural response patterns arising from scenes. In contrast, non-spatial properties, such as single objects, also account for variance in neural responses. The list of critical scene dimensions has continued to grow--sometimes in a contradictory manner--coming to encompass properties such as geometric layout, big/small, crowded/sparse, and three-dimensionality. We demonstrate that these dimensions may be better understood within the more general framework of associative properties. That is, across both the perceptual and semantic domains, features of scene representations are related to one another through learned associations. Critically, the components of such associations are consistent with the dimensions that are typically invoked to account for scene understanding and its neural bases. Using fMRI, we show that non-scene stimuli displaying novel associations across identities or locations recruit putatively scene-selective regions of the human brain (the parahippocampal/lingual region, the retrosplenial complex, and the transverse occipital sulcus/occipital place area). Moreover, we find that the voxel-wise neural patterns arising from these associations are significantly correlated with the neural patterns arising from everyday scenes providing critical evidence whether the same encoding principals underlie both types of processing. These neuroimaging results provide evidence for the hypothesis that the neural representation of scenes is better understood within the broader theoretical framework of associative processing. In addition, the results demonstrate a division of labor that arises across scene-selective regions when processing associations and scenes providing better understanding of the functional roles of each region within the cortical network that mediates scene processing.


Assuntos
Encéfalo/fisiologia , Memória/fisiologia , Percepção Visual/fisiologia , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Radiografia
18.
Artigo em Inglês | MEDLINE | ID: mdl-25698964

RESUMO

How do we understand the complex patterns of neural responses that underlie scene understanding? Studies of the network of brain regions held to be scene-selective-the parahippocampal/lingual region (PPA), the retrosplenial complex (RSC), and the occipital place area (TOS)-have typically focused on single visual dimensions (e.g., size), rather than the high-dimensional feature space in which scenes are likely to be neurally represented. Here we leverage well-specified artificial vision systems to explicate a more complex understanding of how scenes are encoded in this functional network. We correlated similarity matrices within three different scene-spaces arising from: (1) BOLD activity in scene-selective brain regions; (2) behavioral measured judgments of visually-perceived scene similarity; and (3) several different computer vision models. These correlations revealed: (1) models that relied on mid- and high-level scene attributes showed the highest correlations with the patterns of neural activity within the scene-selective network; (2) NEIL and SUN-the models that best accounted for the patterns obtained from PPA and TOS-were different from the GIST model that best accounted for the pattern obtained from RSC; (3) The best performing models outperformed behaviorally-measured judgments of scene similarity in accounting for neural data. One computer vision method-NEIL ("Never-Ending-Image-Learner"), which incorporates visual features learned as statistical regularities across web-scale numbers of scenes-showed significant correlations with neural activity in all three scene-selective regions and was one of the two models best able to account for variance in the PPA and TOS. We suggest that these results are a promising first step in explicating more fine-grained models of neural scene understanding, including developing a clearer picture of the division of labor among the components of the functional scene-selective brain network.

19.
J Cogn Neurosci ; 27(3): 474-91, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25244115

RESUMO

Although object perception involves encoding a wide variety of object properties (e.g., size, color, viewpoint), some properties are irrelevant for identifying the object. The key to successful object recognition is having an internal representation of the object identity that is insensitive to these properties while accurately representing important diagnostic features. Behavioral evidence indicates that the formation of these kinds of invariant object representations takes many years to develop. However, little research has investigated the developmental emergence of invariant object representations in the ventral visual processing stream, particularly in the lateral occipital complex (LOC) that is implicated in object processing in adults. Here, we used an fMR adaptation paradigm to evaluate age-related changes in the neural representation of objects within LOC across variations in size and viewpoint from childhood through early adulthood. We found a dissociation between the neural encoding of object size and object viewpoint within LOC: by age of 5-10 years, area LOC demonstrates adaptation across changes in size, but not viewpoint, suggesting that LOC responses are invariant to size variations, but that adaptation across changes in view is observed in LOC much later in development. Furthermore, activation in LOC was correlated with behavioral indicators of view invariance across the entire sample, such that greater adaptation was correlated with better recognition of objects across changes in viewpoint. We did not observe similar developmental differences within early visual cortex. These results indicate that LOC acquires the capacity to compute invariance specific to different sources of information at different time points over the course of development.


Assuntos
Desenvolvimento Infantil/fisiologia , Neuroimagem Funcional/métodos , Lobo Occipital/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Percepção Espacial/fisiologia , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Percepção de Tamanho/fisiologia , Adulto Jovem
20.
Front Comput Neurosci ; 8: 106, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25309408

RESUMO

The mid- and high-level visual properties supporting object perception in the ventral visual pathway are poorly understood. In the absence of well-specified theory, many groups have adopted a data-driven approach in which they progressively interrogate neural units to establish each unit's selectivity. Such methods are challenging in that they require search through a wide space of feature models and stimuli using a limited number of samples. To more rapidly identify higher-level features underlying human cortical object perception, we implemented a novel functional magnetic resonance imaging method in which visual stimuli are selected in real-time based on BOLD responses to recently shown stimuli. This work was inspired by earlier primate physiology work, in which neural selectivity for mid-level features in IT was characterized using a simple parametric approach (Hung et al., 2012). To extend such work to human neuroimaging, we used natural and synthetic object stimuli embedded in feature spaces constructed on the basis of the complex visual properties of the objects themselves. During fMRI scanning, we employed a real-time search method to control continuous stimulus selection within each image space. This search was designed to maximize neural responses across a pre-determined 1 cm(3) brain region within ventral cortex. To assess the value of this method for understanding object encoding, we examined both the behavior of the method itself and the complex visual properties the method identified as reliably activating selected brain regions. We observed: (1) Regions selective for both holistic and component object features and for a variety of surface properties; (2) Object stimulus pairs near one another in feature space that produce responses at the opposite extremes of the measured activity range. Together, these results suggest that real-time fMRI methods may yield more widely informative measures of selectivity within the broad classes of visual features associated with cortical object representation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA