Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Pathol ; 260(3): 289-303, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37186300

RESUMO

Breast cancer invasion and metastasis result from a complex interplay between tumor cells and the tumor microenvironment (TME). Key oncogenic changes in the TME include aberrant synthesis, processing, and signaling of hyaluronan (HA). Hyaluronan-mediated motility receptor (RHAMM, CD168; HMMR) is an HA receptor enabling tumor cells to sense and respond to this aberrant TME during breast cancer progression. Previous studies have associated RHAMM expression with breast tumor progression; however, cause and effect mechanisms are incompletely established. Focused gene expression analysis of an internal breast cancer patient cohort confirmed that increased RHAMM expression correlates with aggressive clinicopathological features. To probe mechanisms, we developed a novel 27-gene RHAMM-related signature (RRS) by intersecting differentially expressed genes in lymph node (LN)-positive patient cases with the transcriptome of a RHAMM-dependent model of cell transformation, which we validated in an independent cohort. We demonstrate that the RRS predicts for poor survival and is enriched for cell cycle and TME-interaction pathways. Further analyses using CRISPR/Cas9-generated RHAMM-/- breast cancer cells provided direct evidence that RHAMM promotes invasion in vitro and in vivo. Immunohistochemistry studies highlighted heterogeneous RHAMM protein expression, and spatial transcriptomics associated the RRS with RHAMM-high microanatomic foci. We conclude that RHAMM upregulation leads to the formation of 'invasive niches', which are enriched in RRS-related pathways that drive invasion and could be targeted to limit invasive progression and improve patient outcomes. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Ácido Hialurônico/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Receptores de Hialuronatos/metabolismo , Microambiente Tumoral
2.
Oncogene ; 39(13): 2772-2785, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32020054

RESUMO

Young women diagnosed with breast cancer (BC) have poor prognosis due to increased rates of metastasis. In addition, women diagnosed within 10 years of most recent childbirth are approximately three times more likely to develop metastasis than age- and stage-matched nulliparous women. We define these cases as postpartum BC (PPBC) and propose that the unique biology of the postpartum mammary gland drives tumor progression. Our published results revealed roles for SEMA7A in breast tumor cell growth, motility, invasion, and tumor-associated lymphangiogenesis, all of which are also increased in preclinical models of PPBC. However, whether SEMA7A drives progression in PPBC remains largely unexplored. Our results presented herein show that silencing of SEMA7A decreases tumor growth in a model of PPBC, while overexpression is sufficient to increase growth in nulliparous hosts. Further, we show that SEMA7A promotes multiple known drivers of PPBC progression including tumor-associated COX-2 expression and fibroblast-mediated collagen deposition in the tumor microenvironment. In addition, we show for the first time that SEMA7A-expressing cells deposit fibronectin to promote tumor cell survival. Finally, we show that co-expression of SEMA7A/COX-2/FN predicts for poor prognosis in breast cancer patient cohorts. These studies suggest SEMA7A as a key mediator of BC progression, and that targeting SEMA7A may open avenues for novel therapeutic strategies.


Assuntos
Antígenos CD/metabolismo , Neoplasias da Mama/patologia , Período Pós-Parto , Semaforinas/metabolismo , Animais , Antígenos CD/genética , Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Estudos de Coortes , Ciclo-Oxigenase 2/metabolismo , Progressão da Doença , Feminino , Fibronectinas/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Estimativa de Kaplan-Meier , Glândulas Mamárias Humanas/patologia , Camundongos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Gravidez , Prognóstico , RNA Interferente Pequeno/metabolismo , Semaforinas/genética , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Artigo em Inglês | MEDLINE | ID: mdl-30847405

RESUMO

Postpartum involution is the process by which the lactating mammary gland returns to the pre-pregnant state after weaning. Expression of tumor-promotional collagen, upregulation of matrix metalloproteinases, infiltration of M2 macrophages, and remodeling of blood and lymphatic vasculature are all characteristics shared by the involuting mammary gland and breast tumor microenvironment. The tumor promotional nature of the involuting mammary gland is perhaps best evidenced by cases of postpartum breast cancer (PPBC), or those cases diagnosed within 10 years of most recent childbirth. Women with PPBC experience more aggressive disease and higher risk of metastasis than nulliparous patients and those diagnosed outside the postpartum window. Semaphorin 7a (SEMA7A), cyclooxygenase-2 (COX-2), and collagen are all expressed in the involuting mammary gland and, together, predict for decreased metastasis free survival in breast cancer. Studies investigating the role of these proteins in involution have been important for understanding their contributions to PPBC. Postpartum involution thus represents a valuable model for the identification of novel molecular drivers of PPBC and classical cancer hallmarks. In this review, we will highlight the similarities between involution and cancer in the mammary gland, and further define the contribution of SEMA7A/COX-2/collagen interplay to postpartum involution and breast tumor progression and metastasis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA