Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nat Commun ; 14(1): 8121, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38065954

RESUMO

Ribosome biogenesis is a multi-step process, in which a network of trans-acting factors ensures the coordinated assembly of pre-ribosomal particles in order to generate functional ribosomes. Ribosome biogenesis is tightly coordinated with cell proliferation and its perturbation activates a p53-dependent cell-cycle checkpoint. How p53-independent signalling networks connect impaired ribosome biogenesis to the cell-cycle machinery has remained largely enigmatic. We demonstrate that inactivation of the nucleolar SUMO isopeptidases SENP3 and SENP5 disturbs distinct steps of 40S and 60S ribosomal subunit assembly pathways, thereby triggering the canonical p53-dependent impaired ribosome biogenesis checkpoint. However, inactivation of SENP3 or SENP5 also induces a p53-independent checkpoint that converges on the specific downregulation of the key cell-cycle regulator CDK6. We further reveal that impaired ribosome biogenesis generally triggers the downregulation of CDK6, independent of the cellular p53 status. Altogether, these data define the role of SUMO signalling in ribosome biogenesis and unveil a p53-independent checkpoint of impaired ribosome biogenesis.


Assuntos
Cisteína Endopeptidases , Ribossomos , Proteína Supressora de Tumor p53 , Nucléolo Celular/metabolismo , Proliferação de Células , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Humanos , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo
2.
Nat Commun ; 14(1): 8364, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102139

RESUMO

Selective autophagy of the endoplasmic reticulum (ER), known as ER-phagy, is an important regulator of ER remodeling and essential to maintain cellular homeostasis during environmental changes. We recently showed that members of the FAM134 family play a critical role during stress-induced ER-phagy. However, the mechanisms on how they are activated remain largely unknown. In this study, we analyze phosphorylation of FAM134 as a trigger of FAM134-driven ER-phagy upon mTOR (mechanistic target of rapamycin) inhibition. An unbiased screen of kinase inhibitors reveals CK2 to be essential for FAM134B- and FAM134C-driven ER-phagy after mTOR inhibition. Furthermore, we provide evidence that ER-phagy receptors are regulated by ubiquitination events and that treatment with E1 inhibitor suppresses Torin1-induced ER-phagy flux. Using super-resolution microscopy, we show that CK2 activity is essential for the formation of high-density FAM134B and FAM134C clusters. In addition, dense clustering of FAM134B and FAM134C requires phosphorylation-dependent ubiquitination of FAM134B and FAM134C. Treatment with the CK2 inhibitor SGC-CK2-1 or mutation of FAM134B and FAM134C phosphosites prevents ubiquitination of FAM134 proteins, formation of high-density clusters, as well as Torin1-induced ER-phagy flux. Therefore, we propose that CK2-dependent phosphorylation of ER-phagy receptors precedes ubiquitin-dependent activation of ER-phagy flux.


Assuntos
Autofagia , Proteínas de Membrana , Fosforilação , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Autofagia/fisiologia , Retículo Endoplasmático/metabolismo , Proteínas de Transporte/metabolismo , Estresse do Retículo Endoplasmático , Serina-Treonina Quinases TOR/metabolismo , Ubiquitinação
3.
Cell Rep ; 42(12): 113484, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-37999976

RESUMO

The nucleolar scaffold protein NPM1 is a multifunctional regulator of cellular homeostasis, genome integrity, and stress response. NPM1 mutations, known as NPM1c variants promoting its aberrant cytoplasmic localization, are the most frequent genetic alterations in acute myeloid leukemia (AML). A hallmark of AML cells is their dependency on elevated autophagic flux. Here, we show that NPM1 and NPM1c induce the autophagy-lysosome pathway by activating the master transcription factor TFEB, thereby coordinating the expression of lysosomal proteins and autophagy regulators. Importantly, both NPM1 and NPM1c bind to autophagy modifiers of the GABARAP subfamily through an atypical binding module preserved within its N terminus. The propensity of NPM1c to induce autophagy depends on this module, likely indicating that NPM1c exerts its pro-autophagic activity by direct engagement with GABARAPL1. Our data report a non-canonical binding mode of GABARAP family members that drives the pro-autophagic potential of NPM1c, potentially enabling therapeutic options.


Assuntos
Leucemia Mieloide Aguda , Proteínas Nucleares , Humanos , Proteínas Nucleares/metabolismo , Leucemia Mieloide Aguda/metabolismo , Autofagia/fisiologia , Mutação/genética , Lisossomos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo
4.
Am J Physiol Cell Physiol ; 325(6): C1451-C1469, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37899749

RESUMO

Induction of alternative, non-apoptotic cell death programs such as cell-lethal autophagy and mitophagy represent possible strategies to combat glioblastoma (GBM). Here we report that VLX600, a novel iron chelator and oxidative phosphorylation (OXPHOS) inhibitor, induces a caspase-independent type of cell death that is partially rescued in adherent U251 ATG5/7 (autophagy related 5/7) knockout (KO) GBM cells and NCH644 ATG5/7 knockdown (KD) glioma stem-like cells (GSCs), suggesting that VLX600 induces an autophagy-dependent cell death (ADCD) in GBM. This ADCD is accompanied by decreased oxygen consumption, increased expression/mitochondrial localization of BNIP3 (BCL2 interacting protein 3) and BNIP3L (BCL2 interacting protein 3 like), the induction of mitophagy as demonstrated by diminished levels of mitochondrial marker proteins [e.g., COX4I1 (cytochrome c oxidase subunit 4I1)] and the mitoKeima assay as well as increased histone H3 and H4 lysine tri-methylation. Furthermore, the extracellular addition of iron is able to significantly rescue VLX600-induced cell death and mitophagy, pointing out an important role of iron metabolism for GBM cell homeostasis. Interestingly, VLX600 is also able to completely eliminate NCH644 GSC tumors in an organotypic brain slice transplantation model. Our data support the therapeutic concept of ADCD induction in GBM and suggest that VLX600 may be an interesting novel drug candidate for the treatment of this tumor.NEW & NOTEWORTHY Induction of cell-lethal autophagy represents a possible strategy to combat glioblastoma (GBM). Here, we demonstrate that the novel iron chelator and OXPHOS inhibitor VLX600 exerts pronounced tumor cell-killing effects in adherently cultured GBM cells and glioblastoma stem-like cell (GSC) spheroid cultures that depend on the iron-chelating function of VLX600 and on autophagy activation, underscoring the context-dependent role of autophagy in therapy responses. VLX600 represents an interesting novel drug candidate for the treatment of this tumor.


Assuntos
Antineoplásicos , Glioblastoma , Humanos , Mitofagia/fisiologia , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Autofagia , Antineoplásicos/farmacologia , Apoptose , Proteínas Mitocondriais/metabolismo , Quelantes de Ferro/farmacologia , Ferro , Proteínas Proto-Oncogênicas c-bcl-2 , Linhagem Celular Tumoral
5.
Nat Commun ; 14(1): 6242, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37802982

RESUMO

Haematopoietic stem cells (HSC) reside in the bone marrow microenvironment (BMM), where they respond to extracellular calcium [eCa2+] via the G-protein coupled calcium-sensing receptor (CaSR). Here we show that a calcium gradient exists in this BMM, and that [eCa2+] and response to [eCa2+] differ between leukaemias. CaSR influences the location of MLL-AF9+ acute myeloid leukaemia (AML) cells within this niche and differentially impacts MLL-AF9+ AML versus BCR-ABL1+ leukaemias. Deficiency of CaSR reduces AML leukaemic stem cells (LSC) 6.5-fold. CaSR interacts with filamin A, a crosslinker of actin filaments, affects stemness-associated factors and modulates pERK, ß-catenin and c-MYC signaling and intracellular levels of [Ca2+] in MLL-AF9+ AML cells. Combination treatment of cytarabine plus CaSR-inhibition in various models may be superior to cytarabine alone. Our studies suggest CaSR to be a differential and targetable factor in leukaemia progression influencing self-renewal of AML LSC via [eCa2+] cues from the BMM.


Assuntos
Leucemia Mieloide Aguda , Receptores de Detecção de Cálcio , Humanos , Receptores de Detecção de Cálcio/genética , Proteínas Proto-Oncogênicas c-myc , Cálcio , Proteínas de Fusão Oncogênica/metabolismo , Transdução de Sinais , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Citarabina , Microambiente Tumoral
6.
Nature ; 618(7966): 849-854, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37286597

RESUMO

The mitochondrial unfolded protein response (UPRmt) is essential to safeguard mitochondria from proteotoxic damage by activating a dedicated transcriptional response in the nucleus to restore proteostasis1,2. Yet, it remains unclear how the information on mitochondria misfolding stress (MMS) is signalled to the nucleus as part of the human UPRmt (refs. 3,4). Here, we show that UPRmt signalling is driven by the release of two individual signals in the cytosol-mitochondrial reactive oxygen species (mtROS) and accumulation of mitochondrial protein precursors in the cytosol (c-mtProt). Combining proteomics and genetic approaches, we identified that MMS causes the release of mtROS into the cytosol. In parallel, MMS leads to mitochondrial protein import defects causing c-mtProt accumulation. Both signals integrate to activate the UPRmt; released mtROS oxidize the cytosolic HSP40 protein DNAJA1, which leads to enhanced recruitment of cytosolic HSP70 to c-mtProt. Consequently, HSP70 releases HSF1, which translocates to the nucleus and activates transcription of UPRmt genes. Together, we identify a highly controlled cytosolic surveillance mechanism that integrates independent mitochondrial stress signals to initiate the UPRmt. These observations reveal a link between mitochondrial and cytosolic proteostasis and provide molecular insight into UPRmt signalling in human cells.


Assuntos
Citosol , Mitocôndrias , Estresse Proteotóxico , Resposta a Proteínas não Dobradas , Humanos , Núcleo Celular/metabolismo , Citosol/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Ativação Transcricional , Proteostase , Estresse Proteotóxico/fisiologia
7.
Mol Cell Proteomics ; 22(5): 100537, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37001587

RESUMO

The ancestral SARS-CoV-2 strain that initiated the Covid-19 pandemic at the end of 2019 has rapidly mutated into multiple variants of concern with variable pathogenicity and increasing immune escape strategies. However, differences in host cellular antiviral responses upon infection with SARS-CoV-2 variants remain elusive. Leveraging whole-cell proteomics, we determined host signaling pathways that are differentially modulated upon infection with the clinical isolates of the ancestral SARS-CoV-2 B.1 and the variants of concern Delta and Omicron BA.1. Our findings illustrate alterations in the global host proteome landscape upon infection with SARS-CoV-2 variants and the resulting host immune responses. Additionally, viral proteome kinetics reveal declining levels of viral protein expression during Omicron BA.1 infection when compared to ancestral B.1 and Delta variants, consistent with its reduced replication rates. Moreover, molecular assays reveal deferral activation of specific host antiviral signaling upon Omicron BA.1 and BA.2 infections. Our study provides an overview of host proteome profile of multiple SARS-CoV-2 variants and brings forth a better understanding of the instigation of key immune signaling pathways causative for the differential pathogenicity of SARS-CoV-2 variants.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Proteoma , Pandemias , Antivirais , Anticorpos Neutralizantes
8.
J Cell Sci ; 136(3)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36644903

RESUMO

Autophagy is a catabolic process during which cytosolic material is enwrapped in a newly formed double-membrane structure called the autophagosome, and subsequently targeted for degradation in the lytic compartment of the cell. The fusion of autophagosomes with the lytic compartment is a tightly regulated step and involves membrane-bound SNARE proteins. These play a crucial role as they promote lipid mixing and fusion of the opposing membranes. Among the SNARE proteins implicated in autophagy, the essential SNARE protein YKT6 is the only SNARE protein that is evolutionarily conserved from yeast to humans. Here, we show that alterations in YKT6 function, in both mammalian cells and nematodes, produce early and late autophagy defects that result in reduced survival. Moreover, mammalian autophagosomal YKT6 is phospho-regulated by the ULK1 kinase, preventing premature bundling with the lysosomal SNARE proteins and thereby inhibiting autophagosome-lysosome fusion. Together, our findings reveal that timely regulation of the YKT6 phosphorylation status is crucial throughout autophagy progression and cell survival.


Assuntos
Autofagia , Proteínas de Saccharomyces cerevisiae , Animais , Humanos , Proteínas R-SNARE/metabolismo , Fosforilação , Autofagia/genética , Autofagossomos/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Fusão de Membrana/fisiologia , Saccharomyces cerevisiae/metabolismo , Lisossomos/metabolismo , Mamíferos/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Blood Adv ; 7(7): 1190-1203, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36044386

RESUMO

Leukemia cells reciprocally interact with their surrounding bone marrow microenvironment (BMM), rendering it hospitable to leukemia cell survival, for instance through the release of small extracellular vesicles (sEVs). In contrast, we show here that BMM deficiency of pleckstrin homology domain family M member 1 (PLEKHM1), which serves as a hub between fusion and secretion of intracellular vesicles and is important for vesicular secretion in osteoclasts, accelerates murine BCR-ABL1+ B-cell acute lymphoblastic leukemia (B-ALL) via regulation of the cargo of sEVs released by BMM-derived mesenchymal stromal cells (MSCs). PLEKHM1-deficient MSCs and their sEVs carry increased amounts of syntenin and syndecan-1, resulting in a more immature B-cell phenotype and an increased number/function of leukemia-initiating cells (LICs) via focal adhesion kinase and AKT signaling in B-ALL cells. Ex vivo pretreatment of LICs with sEVs derived from PLEKHM1-deficient MSCs led to a strong trend toward acceleration of murine and human BCR-ABL1+ B-ALL. In turn, inflammatory mediators such as recombinant or B-ALL cell-derived tumor necrosis factor α or interleukin-1ß condition murine and human MSCs in vitro, decreasing PLEKHM1, while increasing syntenin and syndecan-1 in MSCs, thereby perpetuating the sEV-associated circuit. Consistently, human trephine biopsies of patients with B-ALL showed a reduced percentage of PLEKHM1+ MSCs. In summary, our data reveal an important role of BMM-derived sEVs for driving specifically BCR-ABL1+ B-ALL, possibly contributing to its worse prognosis compared with BCR-ABL1- B-ALL, and suggest that secretion of inflammatory cytokines by cancer cells in general may similarly modulate the tumor microenvironment.


Assuntos
Linfoma de Burkitt , Células-Tronco Mesenquimais , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Animais , Camundongos , Sindecana-1/metabolismo , Sinteninas/metabolismo , Comunicação Celular , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Linfoma de Burkitt/patologia , Células-Tronco Mesenquimais/metabolismo , Microambiente Tumoral
10.
Am J Physiol Cell Physiol ; 324(2): C339-C352, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36440857

RESUMO

A20 binding inhibitor of nuclear factor kappa B (NF-κB)-1 (ABIN-1), a polyubiquitin-binding protein, is a signal-induced autophagy receptor that attenuates NF-κB-mediated inflammation and cell death. The present study aimed to elucidate the potential role of ABIN-1 in mitophagy, a biological process whose outcome is decisive in diverse physiological and pathological settings. Microtubule-associated proteins 1A/1B light chain 3B-II (LC3B-II) was found to be in complex with ectopically expressed hemagglutinin (HA)-tagged-full length (FL)-ABIN-1. Bacterial expression of ABIN-1 and LC3A and LC3B showed direct binding of ABIN-1 to LC3 proteins, whereas mutations in the LC3-interacting region (LIR) 1 and 2 motifs of ABIN-1 abrogated ABIN-1/LC3B-II complex formation. Importantly, induction of autophagy in HeLa cells resulted in colocalization of ABIN-1 with LC3B-II in autophagosomes and with lysosomal-associated membrane protein 1 (LAMP-1) in autophagolysosomes, leading to degradation of ABIN-1 with p62. Interestingly, ABIN-1 was found to translocate to damaged mitochondria in HeLa-mCherry-Parkin transfected cells. In line with this observation, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated deletion of ABIN-1 significantly inhibited the degradation of the mitochondrial outer membrane proteins voltage-dependent anion-selective channel 1 (VDAC-1), mitofusin-2 (MFN2), and translocase of outer mitochondrial membrane (TOM)20. In addition, short interfering RNA (siRNA)-mediated knockdown of ABIN-1 significantly decreased lysosomal uptake of mitochondria in HeLa cells expressing mCherry-Parkin and the fluorescence reporter mt-mKEIMA. Collectively, our results identify ABIN-1 as a novel and selective mitochondrial autophagy regulator that promotes mitophagy, thereby adding a new player to the complex cellular machinery regulating mitochondrial homeostasis.


Assuntos
Mitocôndrias , NF-kappa B , Humanos , NF-kappa B/metabolismo , Células HeLa , Ligação Proteica , Mitocôndrias/metabolismo , Autofagia , Ubiquitina-Proteína Ligases/metabolismo
11.
Autophagy ; 19(7): 2146-2147, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36416088

RESUMO

Autophagosome isolation enables the thorough investigation of structural components and engulfed materials. Recently, we introduced a novel antibody-based FACS-mediated method for isolation of native macroautophagic/autophagic vesicles and confirmed the quality of the preparations. We performed phospholipidomic and proteomic analyses to characterize autophagic vesicle-associated phospholipids and protein cargoes under different autophagy conditions. Lipidomic analyses identified phosphoglycerides and sphingomyelins within autophagic vesicles and revealed that the lipid composition was unaffected by different rates of autophagosome formation. Proteomic analyses identified more than 4500 potential autophagy substrates and showed that in comparison to autophagic vesicles isolated under basal autophagy conditions, starvation only marginally affected the cargo profile. Proteasome inhibition, however, resulted in the enhanced degradation of ubiquitin-proteasome system components. Taken together, the novel isolation method enriched large quantities of autophagic vesicles and enabled detailed analyses of their lipid and cargo composition.


Assuntos
Autofagia , Complexo de Endopeptidases do Proteassoma , Autofagia/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteômica , Autofagossomos/metabolismo , Lipídeos
12.
Cell Rep ; 41(10): 111653, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36476874

RESUMO

The endosomal-lysosomal system is a series of organelles in the endocytic pathway that executes trafficking and degradation of proteins and lipids and mediates the internalization of nutrients and growth factors to ensure cell survival, growth, and differentiation. Here, we reveal regulatory, non-proteolytic ubiquitin signals in this complex system that are controlled by the enigmatic deubiquitinase USP32. Knockout (KO) of USP32 in primary hTERT-RPE1 cells results among others in hyperubiquitination of the Ragulator complex subunit LAMTOR1. Accumulation of LAMTOR1 ubiquitination impairs its interaction with the vacuolar H+-ATPase, reduces Ragulator function, and ultimately limits mTORC1 recruitment. Consistently, in USP32 KO cells, less mTOR kinase localizes to lysosomes, mTORC1 activity is decreased, and autophagy is induced. Furthermore, we demonstrate that depletion of USP32 homolog CYK-3 in Caenorhabditis elegans results in mTOR inhibition and autophagy induction. In summary, we identify a control mechanism of the mTORC1 activation cascade at lysosomes via USP32-regulated LAMTOR1 ubiquitination.


Assuntos
Autofagia , Alvo Mecanístico do Complexo 1 de Rapamicina
13.
J Proteome Res ; 21(11): 2827-2835, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36239476

RESUMO

Sample loss and contamination are critical preanalytical pitfalls in microscale proteomic applications of nonadhering cells. Common assays and workflows are not easily adoptable to microscale sample sizes of suspension cells due to inadvertent sample loss. This impedes preanalytical experimental manipulation of limited suspension cell samples for microscale proteomics applications, such as encountered for primary human materials. Here, we describe and test a simple manual batch technique for single-step 100-fold concentration of scarce numbers of diluted suspension cells (down to 5000 cells) by volume reduction, facilitating microscale experiments with suspension cells. Pipette tips with heat-sealed orifices (SpinTips) are manufactured within 1 min and serve as versatile microcentrifugation vessels from which supernatant can be aspirated with minimal cell loss. A residual volume of approximately 3 µL can be achieved without visualization of the cell pellet. The results show that SpinTips enable the concentration, medium exchange, washing, and culture of highly limited amounts of suspension cells for functional manipulation and microscale proteomics and are readily incorporated into standard workflows. The application is illustrated by profiling ex vivo responses of primary acute myeloid leukemia (AML) cells from one AML patient to daunorubicin (DNR) to a depth of 3462 quantified proteins with excellent repeatability.


Assuntos
Leucemia Mieloide Aguda , Proteômica , Humanos , Daunorrubicina , Leucemia Mieloide Aguda/metabolismo
14.
EMBO Rep ; 23(12): e53065, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36215690

RESUMO

Autophagy is responsible for clearance of an extensive portfolio of cargoes, which are sequestered into vesicles, called autophagosomes, and are delivered to lysosomes for degradation. The pathway is highly dynamic and responsive to several stress conditions. However, the phospholipid composition and protein contents of human autophagosomes under changing autophagy rates are elusive so far. Here, we introduce an antibody-based FACS-mediated approach for the isolation of native autophagic vesicles and ensured the quality of the preparations. Employing quantitative lipidomics, we analyze phospholipids present within human autophagic vesicles purified upon basal autophagy, starvation, and proteasome inhibition. Importantly, besides phosphoglycerides, we identify sphingomyelin within autophagic vesicles and show that the phospholipid composition is unaffected by the different conditions. Employing quantitative proteomics, we obtain cargo profiles of autophagic vesicles isolated upon the different treatment paradigms. Interestingly, starvation shows only subtle effects, while proteasome inhibition results in the enhanced presence of ubiquitin-proteasome pathway factors within autophagic vesicles. Thus, here we present a powerful method for the isolation of native autophagic vesicles, which enabled profound phospholipid and cargo analyses.


Assuntos
Complexo de Endopeptidases do Proteassoma , Proteômica , Humanos , Autofagia , Fosfolipídeos
15.
JACS Au ; 1(6): 777-785, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34467332

RESUMO

The discovery of clustered regularly interspaced short palindromic repeats and their associated proteins (Cas) has revolutionized the field of genome and epigenome editing. A number of new methods have been developed to precisely control the function and activity of Cas proteins, including fusion proteins and small-molecule modulators. Proteolysis-targeting chimeras (PROTACs) represent a new concept using the ubiquitin-proteasome system to degrade a protein of interest, highlighting the significance of chemically induced protein-E3 ligase interaction in drug discovery. Here, we engineered Cas proteins (Cas9, dCas9, Cas12, and Cas13) by inserting a Phe-Cys-Pro-Phe (FCPF) amino acid sequence (known as the π-clamp system) and demonstrate that the modified CasFCPF proteins can be (1) labeled in live cells by perfluoroaromatics carrying the fluorescein or (2) degraded by a perfluoroaromatics-functionalized PROTAC (PROTAC-FCPF). A proteome-wide analysis of PROTAC-FCPF-mediated Cas9FCPF protein degradation revealed a high target specificity, suggesting a wide range of applications of perfluoroaromatics-induced proximity in the regulation of stability, activity, and functionality of any FCPF-tagging protein.

16.
Cell Chem Biol ; 28(11): 1616-1627.e8, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34048672

RESUMO

The proteolysis-targeting chimeras (PROTACs) are a new technology to degrade target proteins. However, their clinical application is limited currently by lack of chemical binders to target proteins. For instance, it is still unknown whether splicing factor 3B subunit 1 (SF3B1) is targetable by PROTACs. We recently identified a 2-aminothiazole derivative (herein O4I2) as a promoter in the generation of human pluripotent stem cells. In this work, proteomic analysis on the biotinylated O4I2 revealed that O4I2 targeted SF3B1 and positively regulated RNA splicing. Fusing thalidomide-the ligand of the cereblon ubiquitin ligase-to O4I2 led to a new PROTAC-O4I2, which selectively degraded SF3B1 and induced cellular apoptosis in a CRBN-dependent manner. In a Drosophila intestinal tumor model, PROTAC-O4I2 increased survival by interference with the maintenance and proliferation of stem cell. Thus, our finding demonstrates that SF3B1 is PROTACable by utilizing noninhibitory chemicals, which expands the list of PROTAC target proteins.


Assuntos
Fosfoproteínas/antagonistas & inibidores , Fatores de Processamento de RNA/antagonistas & inibidores , Tiazóis/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Drosophila melanogaster , Humanos , Fosfoproteínas/metabolismo , Proteólise/efeitos dos fármacos , Splicing de RNA/efeitos dos fármacos , Fatores de Processamento de RNA/metabolismo , Tiazóis/síntese química , Tiazóis/química
17.
Adv Virus Res ; 109: 1-29, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33934824

RESUMO

The host cell proteome undergoes a variety of dynamic changes during viral infection, elicited by the virus itself or host cell defense mechanisms. Studying these changes on a global scale by integrating functional and physical interactions within protein networks during infection is an important tool to understand pathology. Indeed, proteomics studies dissecting protein signaling cascades and interaction networks upon infection showed how global information can significantly improve understanding of disease mechanisms of diverse viral infections. Here, we summarize and give examples of different experimental designs, proteomics approaches and bioinformatics analyses that allow profiling proteome changes and host-pathogen interactions to gain a molecular systems view of viral infection.


Assuntos
Biologia Computacional/métodos , Interações Hospedeiro-Patógeno , Proteômica/métodos , Viroses , Vírus/patogenicidade , Livros , Humanos , Proteoma/metabolismo , Transdução de Sinais , Biologia de Sistemas
18.
FEBS Lett ; 595(7): 864-880, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33452816

RESUMO

The lysosome is a cellular signalling hub at the point of convergence of endocytic and autophagic pathways, where the contents are degraded and recycled. Pleckstrin homology domain-containing family member 1 (PLEKHM1) acts as an adaptor to facilitate the fusion of endocytic and autophagic vesicles with the lysosome. However, it is unclear how PLEKHM1 function at the lysosome is controlled. Herein, we show that PLEKHM1 coprecipitates with, and is directly phosphorylated by, mTOR. Using a phosphospecific antibody against Ser432/S435 of PLEKHM1, we show that the same motif is a direct target for ERK2-mediated phosphorylation in a growth factor-dependent manner. This dual regulation of PLEKHM1 at a highly conserved region points to a convergence of both growth factor- and amino acid-sensing pathways, placing PLEKHM1 at a critical juncture of cellular metabolism.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Relacionadas à Autofagia/genética , Lisossomos/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Serina-Treonina Quinases TOR/genética , Autofagia/genética , Endossomos/genética , Células HeLa , Humanos , Fosforilação/genética , Ligação Proteica/genética
19.
Autophagy ; 17(11): 3424-3443, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33461384

RESUMO

Increasing evidence suggests that induction of lethal macroautophagy/autophagy carries potential significance for the treatment of glioblastoma (GBM). In continuation of previous work, we demonstrate that pimozide and loperamide trigger an ATG5- and ATG7 (autophagy related 5 and 7)-dependent type of cell death that is significantly reduced with cathepsin inhibitors and the lipid reactive oxygen species (ROS) scavenger α-tocopherol in MZ-54 GBM cells. Global proteomic analysis after treatment with both drugs also revealed an increase of proteins related to lipid and cholesterol metabolic processes. These changes were accompanied by a massive accumulation of cholesterol and other lipids in the lysosomal compartment, indicative of impaired lipid transport/degradation. In line with these observations, pimozide and loperamide treatment were associated with a pronounced increase of bioactive sphingolipids including ceramides, glucosylceramides and sphingoid bases measured by targeted lipidomic analysis. Furthermore, pimozide and loperamide inhibited the activity of SMPD1/ASM (sphingomyelin phosphodiesterase 1) and promoted induction of lysosomal membrane permeabilization (LMP), as well as release of CTSB (cathepsin B) into the cytosol in MZ-54 wild-type (WT) cells. Whereas LMP and cell death were significantly attenuated in ATG5 and ATG7 knockout (KO) cells, both events were enhanced by depletion of the lysophagy receptor VCP (valosin containing protein), supporting a pro-survival function of lysophagy under these conditions. Collectively, our data suggest that pimozide and loperamide-driven autophagy and lipotoxicity synergize to induce LMP and cell death. The results also support the notion that simultaneous overactivation of autophagy and induction of LMP represents a promising approach for the treatment of GBM.Abbreviations: ACD: autophagic cell death; AKT1: AKT serine/threonine kinase 1; ATG5: autophagy related 5; ATG7: autophagy related 7; ATG14: autophagy related 14; CERS1: ceramide synthase 1; CTSB: cathepsin B; CYBB/NOX2: cytochrome b-245 beta chain; ER: endoplasmatic reticulum; FBS: fetal bovine serum; GBM: glioblastoma; GO: gene ontology; HTR7/5-HT7: 5-hydroxytryptamine receptor 7; KD: knockdown; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LAP: LC3-associated phagocytosis; LMP: lysosomal membrane permeabilization; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; RB1CC1: RB1 inducible coiled-coil 1; ROS: reactive oxygen species; RPS6: ribosomal protein S6; SMPD1/ASM: sphingomyelin phosphodiesterase 1; VCP/p97: valosin containing protein; WT: wild-type.


Assuntos
Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Loperamida/farmacologia , Pimozida/farmacologia , Proteína 5 Relacionada à Autofagia/antagonistas & inibidores , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína 7 Relacionada à Autofagia/antagonistas & inibidores , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Neoplasias Encefálicas/metabolismo , Catepsinas/metabolismo , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Linhagem Celular Tumoral , Ceramidas/metabolismo , Técnicas de Inativação de Genes , Glioblastoma/metabolismo , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Permeabilidade/efeitos dos fármacos , Proteoma/metabolismo , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Esfingomielina Fosfodiesterase/metabolismo
20.
Molecules ; 25(23)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33260959

RESUMO

SUMOylation is a reversible posttranslational modification pathway catalyzing the conjugation of small ubiquitin-related modifier (SUMO) proteins to lysine residues of distinct target proteins. SUMOylation modifies a wide variety of cellular regulators thereby affecting a multitude of key processes in a highly dynamic manner. The SUMOylation pathway displays a hallmark in cellular stress-adaption, such as heat or redox stress. It has been proposed that enhanced cellular SUMOylation protects the brain during ischemia, however, little is known about the specific regulation of the SUMO system and the potential target proteins during cardiac ischemia and reperfusion injury (I/R). By applying left anterior descending (LAD) coronary artery ligation and reperfusion in mice, we detect dynamic changes in the overall cellular SUMOylation pattern correlating with decreased SUMO deconjugase activity during I/R injury. Further, unbiased system-wide quantitative SUMO-proteomics identified a sub-group of SUMO targets exhibiting significant alterations in response to cardiac I/R. Notably, transcription factors that control hypoxia- and angiogenesis-related gene expression programs, exhibit altered SUMOylation during ischemic stress adaptation. Moreover, several components of the ubiquitin proteasome system undergo dynamic changes in SUMO conjugation during cardiac I/R suggesting an involvement of SUMO signaling in protein quality control and proteostasis in the ischemic heart. Altogether, our study reveals regulated candidate SUMO target proteins in the mouse heart, which might be important in coping with hypoxic/proteotoxic stress during cardiac I/R injury.


Assuntos
Isquemia Miocárdica/metabolismo , Proteoma/análise , Traumatismo por Reperfusão/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Isquemia Miocárdica/patologia , Proteoma/metabolismo , Proteômica , Traumatismo por Reperfusão/patologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA