Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Neurol Neurosurg Psychiatry ; 95(4): 360-365, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38050140

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a disease of the motor network associated with brain structure and functional connectivity alterations that are implicated in disease progression. Whether such changes have a causal role in ALS, fitting with a postulated influence of premorbid cerebral architecture on the phenotypes associated with neurodegenerative disorders is not known. METHODS: This study considered causal effects and shared genetic risk of 2240 structural and functional MRI brain scan imaging-derived phenotypes (IDPs) on ALS using two sample Mendelian randomisation, with putative associations further examined with extensive sensitivity analysis. Shared genetic predisposition between IDPs and ALS was explored using genetic correlation analysis. RESULTS: Increased white matter volume in the cerebral hemispheres was causally associated with ALS. Weaker causal associations were observed for brain stem grey matter volume, parieto-occipital white matter surface and volume of the left thalamic ventral anterior nucleus. Genetic correlation was observed between ALS and intracellular volume fraction and isotropic free water volume fraction within the posterior limb of the internal capsule. CONCLUSIONS: This study provides evidence that premorbid brain structure, in particular white matter volume, contributes to the risk of ALS.


Assuntos
Esclerose Lateral Amiotrófica , Substância Branca , Humanos , Esclerose Lateral Amiotrófica/diagnóstico por imagem , Esclerose Lateral Amiotrófica/genética , Encéfalo/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Imageamento por Ressonância Magnética , Substância Branca/diagnóstico por imagem
2.
Mol Psychiatry ; 28(7): 3111-3120, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37165155

RESUMO

The difference between chronological age and the apparent age of the brain estimated from brain imaging data-the brain age gap (BAG)-is widely considered a general indicator of brain health. Converging evidence supports that BAG is sensitive to an array of genetic and nongenetic traits and diseases, yet few studies have examined the genetic architecture and its corresponding causal relationships with common brain disorders. Here, we estimate BAG using state-of-the-art neural networks trained on brain scans from 53,542 individuals (age range 3-95 years). A genome-wide association analysis across 28,104 individuals (40-84 years) from the UK Biobank revealed eight independent genomic regions significantly associated with BAG (p < 5 × 10-8) implicating neurological, metabolic, and immunological pathways - among which seven are novel. No significant genetic correlations or causal relationships with BAG were found for Parkinson's disease, major depressive disorder, or schizophrenia, but two-sample Mendelian randomization indicated a causal influence of AD (p = 7.9 × 10-4) and bipolar disorder (p = 1.35 × 10-2) on BAG. These results emphasize the polygenic architecture of brain age and provide insights into the causal relationship between selected neurological and neuropsychiatric disorders and BAG.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Transtornos Mentais , Humanos , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Transtorno Depressivo Maior/genética , Estudo de Associação Genômica Ampla , Transtornos Mentais/genética , Encéfalo , Transtorno Bipolar/genética
3.
PLoS One ; 18(3): e0282363, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36947528

RESUMO

Telomeres form protective caps at the ends of chromosomes, and their attrition is a marker of biological aging. Short telomeres are associated with an increased risk of neurological and psychiatric disorders including dementia. The mechanism underlying this risk is unclear, and may involve brain structure and function. However, the relationship between telomere length and neuroimaging markers is poorly characterized. Here we show that leucocyte telomere length (LTL) is associated with multi-modal MRI phenotypes in 31,661 UK Biobank participants. Longer LTL is associated with: i) larger global and subcortical grey matter volumes including the hippocampus, ii) lower T1-weighted grey-white tissue contrast in sensory cortices, iii) white-matter microstructure measures in corpus callosum and association fibres, iv) lower volume of white matter hyperintensities, and v) lower basal ganglia iron. Longer LTL was protective against certain related clinical manifestations, namely all-cause dementia (HR 0.93, 95% CI: 0.91-0.96), but not stroke or Parkinson's disease. LTL is associated with multiple MRI endophenotypes of neurodegenerative disease, suggesting a pathway by which longer LTL may confer protective against dementia.


Assuntos
Demência , Doenças Neurodegenerativas , Humanos , Bancos de Espécimes Biológicos , Encéfalo/diagnóstico por imagem , Fenótipo , Telômero/genética , Neuroimagem , Reino Unido , Demência/diagnóstico por imagem , Demência/genética , Leucócitos
4.
Neuroimage ; 265: 119779, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36462729

RESUMO

Resting-state fMRI studies have shown that multiple functional networks, which consist of distributed brain regions that share synchronised spontaneous activity, co-exist in the brain. As these resting-state networks (RSNs) have been thought to reflect the brain's intrinsic functional organization, intersubject variability in the networks' spontaneous fluctuations may be associated with individuals' clinical, physiological, cognitive, and genetic traits. Here, we investigated resting-state fMRI data along with extensive clinical, lifestyle, and genetic data collected from 37,842 UK Biobank participants, with the object of elucidating intersubject variability in the fluctuation amplitudes of RSNs. Functional properties of the RSN amplitudes were first examined by analyzing correlations with the well-established between-network functional connectivity. It was found that a network amplitude is highly correlated with the mean strength of the functional connectivity that the network has with the other networks. Intersubject clustering analysis showed the amplitudes are most strongly correlated with age, cardiovascular factors, body composition, blood cell counts, lung function, and sex, with some differences in the correlation strengths between sensory and cognitive RSNs. Genome-wide association studies (GWASs) of RSN amplitudes identified several significant genetic variants reported in previous GWASs for their implications in sleep duration. We provide insight into key factors determining RSN amplitudes and demonstrate that intersubject variability of the amplitudes primarily originates from differences in temporal synchrony between functionally linked brain regions, rather than differences in the magnitude of raw voxelwise BOLD signal changes. This finding additionally revealed intriguing differences between sensory and cognitive RSNs with respect to sex effects on temporal synchrony and provided evidence suggesting that synchronous coactivations of functionally linked brain regions, and magnitudes of BOLD signal changes, may be related to different genetic mechanisms. These results underscore that intersubject variability of the amplitudes in health and disease need to be interpreted largely as a measure of the sum of within-network temporal synchrony and amplitudes of BOLD signals, with a dominant contribution from the former.


Assuntos
Mapeamento Encefálico , Estudo de Associação Genômica Ampla , Humanos , Mapeamento Encefálico/métodos , Descanso/fisiologia , Encéfalo/fisiologia , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia
5.
PLoS One ; 17(9): e0273704, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36173949

RESUMO

INTRODUCTION: Magnetic resonance imaging (MRI) of the brain could be a key diagnostic and research tool for understanding the neuropsychiatric complications of COVID-19. For maximum impact, multi-modal MRI protocols will be needed to measure the effects of SARS-CoV-2 infection on the brain by diverse potentially pathogenic mechanisms, and with high reliability across multiple sites and scanner manufacturers. Here we describe the development of such a protocol, based upon the UK Biobank, and its validation with a travelling heads study. A multi-modal brain MRI protocol comprising sequences for T1-weighted MRI, T2-FLAIR, diffusion MRI (dMRI), resting-state functional MRI (fMRI), susceptibility-weighted imaging (swMRI), and arterial spin labelling (ASL), was defined in close approximation to prior UK Biobank (UKB) and C-MORE protocols for Siemens 3T systems. We iteratively defined a comparable set of sequences for General Electric (GE) 3T systems. To assess multi-site feasibility and between-site variability of this protocol, N = 8 healthy participants were each scanned at 4 UK sites: 3 using Siemens PRISMA scanners (Cambridge, Liverpool, Oxford) and 1 using a GE scanner (King's College London). Over 2,000 Imaging Derived Phenotypes (IDPs), measuring both data quality and regional image properties of interest, were automatically estimated by customised UKB image processing pipelines (S2 File). Components of variance and intra-class correlations (ICCs) were estimated for each IDP by linear mixed effects models and benchmarked by comparison to repeated measurements of the same IDPs from UKB participants. Intra-class correlations for many IDPs indicated good-to-excellent between-site reliability. Considering only data from the Siemens sites, between-site reliability generally matched the high levels of test-retest reliability of the same IDPs estimated in repeated, within-site, within-subject scans from UK Biobank. Inclusion of the GE site resulted in good-to-excellent reliability for many IDPs, although there were significant between-site differences in mean and scaling, and reduced ICCs, for some classes of IDP, especially T1 contrast and some dMRI-derived measures. We also identified high reliability of quantitative susceptibility mapping (QSM) IDPs derived from swMRI images, multi-network ICA-based IDPs from resting-state fMRI, and olfactory bulb structure IDPs from T1, T2-FLAIR and dMRI data. CONCLUSION: These results give confidence that large, multi-site MRI datasets can be collected reliably at different sites across the diverse range of MRI modalities and IDPs that could be mechanistically informative in COVID brain research. We discuss limitations of the study and strategies for further harmonisation of data collected from sites using scanners supplied by different manufacturers. These acquisition and analysis protocols are now in use for MRI assessments of post-COVID patients (N = 700) as part of the ongoing COVID-CNS study.


Assuntos
Encéfalo , COVID-19 , Humanos , Bancos de Espécimes Biológicos , Encéfalo/diagnóstico por imagem , COVID-19/diagnóstico por imagem , Imageamento por Ressonância Magnética , Fenótipo , Reprodutibilidade dos Testes , SARS-CoV-2 , Reino Unido
6.
Neuroimage ; 258: 119385, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35714886

RESUMO

While population-scale neuroimaging studies offer the promise of discovery and characterisation of subtle risk factors, massive sample sizes increase the power for both meaningful associations and those attributable to confounds. This motivates the need for causal modelling of observational data that goes beyond statements of association and towards deeper understanding of complex relationships between individual traits and phenotypes, clinical biomarkers, genetic variation, and brain-related measures of health. Mendelian randomisation (MR) presents a way to obtain causal inference on the basis of genetic data and explicit assumptions about the relationship between genetic variables, exposure and outcome. In this work, we provide an introduction to and overview of causal inference methods based on Mendelian randomisation, with examples involving imaging-derived phenotypes from UK Biobank to make these methods accessible to neuroimaging researchers. We motivate the use of MR techniques, lay out the underlying assumptions, introduce common MR methods and focus on several scenarios in which modelling assumptions are potentially violated, resulting in biased effect estimates. Importantly, we give a detailed account of necessary steps to increase the reliability of MR results with rigorous sensitivity analyses.


Assuntos
Análise da Randomização Mendeliana , Neuroimagem , Causalidade , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana/métodos , Reprodutibilidade dos Testes , Fatores de Risco
7.
Nature ; 604(7907): 697-707, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35255491

RESUMO

There is strong evidence of brain-related abnormalities in COVID-191-13. However, it remains unknown whether the impact of SARS-CoV-2 infection can be detected in milder cases, and whether this can reveal possible mechanisms contributing to brain pathology. Here we investigated brain changes in 785 participants of UK Biobank (aged 51-81 years) who were imaged twice using magnetic resonance imaging, including 401 cases who tested positive for infection with SARS-CoV-2 between their two scans-with 141 days on average separating their diagnosis and the second scan-as well as 384 controls. The availability of pre-infection imaging data reduces the likelihood of pre-existing risk factors being misinterpreted as disease effects. We identified significant longitudinal effects when comparing the two groups, including (1) a greater reduction in grey matter thickness and tissue contrast in the orbitofrontal cortex and parahippocampal gyrus; (2) greater changes in markers of tissue damage in regions that are functionally connected to the primary olfactory cortex; and (3) a greater reduction in global brain size in the SARS-CoV-2 cases. The participants who were infected with SARS-CoV-2 also showed on average a greater cognitive decline between the two time points. Importantly, these imaging and cognitive longitudinal effects were still observed after excluding the 15 patients who had been hospitalised. These mainly limbic brain imaging results may be the in vivo hallmarks of a degenerative spread of the disease through olfactory pathways, of neuroinflammatory events, or of the loss of sensory input due to anosmia. Whether this deleterious effect can be partially reversed, or whether these effects will persist in the long term, remains to be investigated with additional follow-up.


Assuntos
Encéfalo , COVID-19 , Idoso , Idoso de 80 Anos ou mais , Bancos de Espécimes Biológicos , Encéfalo/diagnóstico por imagem , Encéfalo/virologia , COVID-19/patologia , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , SARS-CoV-2 , Olfato , Reino Unido/epidemiologia
8.
medRxiv ; 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-34189535

RESUMO

There is strong evidence for brain-related abnormalities in COVID-19 1-13 . It remains unknown however whether the impact of SARS-CoV-2 infection can be detected in milder cases, and whether this can reveal possible mechanisms contributing to brain pathology. Here, we investigated brain changes in 785 UK Biobank participants (aged 51-81) imaged twice, including 401 cases who tested positive for infection with SARS-CoV-2 between their two scans, with 141 days on average separating their diagnosis and second scan, and 384 controls. The availability of pre-infection imaging data reduces the likelihood of pre-existing risk factors being misinterpreted as disease effects. We identified significant longitudinal effects when comparing the two groups, including: (i) greater reduction in grey matter thickness and tissue-contrast in the orbitofrontal cortex and parahippocampal gyrus, (ii) greater changes in markers of tissue damage in regions functionally-connected to the primary olfactory cortex, and (iii) greater reduction in global brain size. The infected participants also showed on average larger cognitive decline between the two timepoints. Importantly, these imaging and cognitive longitudinal effects were still seen after excluding the 15 cases who had been hospitalised. These mainly limbic brain imaging results may be the in vivo hallmarks of a degenerative spread of the disease via olfactory pathways, of neuroinflammatory events, or of the loss of sensory input due to anosmia. Whether this deleterious impact can be partially reversed, or whether these effects will persist in the long term, remains to be investigated with additional follow up.

9.
iScience ; 23(1): 100780, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31918046

RESUMO

Acute myeloid leukemia (AML) is a severe, mostly fatal hematopoietic malignancy. We were interested in whether transcriptomic-based machine learning could predict AML status without requiring expert input. Using 12,029 samples from 105 different studies, we present a large-scale study of machine learning-based prediction of AML in which we address key questions relating to the combination of machine learning and transcriptomics and their practical use. We find data-driven, high-dimensional approaches-in which multivariate signatures are learned directly from genome-wide data with no prior knowledge-to be accurate and robust. Importantly, these approaches are highly scalable with low marginal cost, essentially matching human expert annotation in a near-automated workflow. Our results support the notion that transcriptomics combined with machine learning could be used as part of an integrated -omics approach wherein risk prediction, differential diagnosis, and subclassification of AML are achieved by genomics while diagnosis could be assisted by transcriptomic-based machine learning.

10.
Brain Imaging Behav ; 13(5): 1361-1374, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30155789

RESUMO

Neuroanatomical pattern classification using support vector machines (SVMs) has shown promising results in classifying Multiple Sclerosis (MS) patients based on individual structural magnetic resonance images (MRI). To determine whether pattern classification using SVMs facilitates predicting conversion to clinically definite multiple sclerosis (CDMS) from clinically isolated syndrome (CIS). We used baseline MRI data from 364 patients with CIS, randomised to interferon beta-1b or placebo. Non-linear SVMs and 10-fold cross-validation were applied to predict converters/non-converters (175/189) at two years follow-up based on clinical and demographic data, lesion-specific quantitative geometric features and grey-matter-to-whole-brain volume ratios. We applied linear SVM analysis and leave-one-out cross-validation to subgroups of converters (n = 25) and non-converters (n = 44) based on cortical grey matter segmentations. Highest prediction accuracies of 70.4% (p = 8e-5) were reached with a combination of lesion-specific geometric (image-based) and demographic/clinical features. Cortical grey matter was informative for the placebo group (acc.: 64.6%, p = 0.002) but not for the interferon group. Classification based on demographic/clinical covariates only resulted in an accuracy of 56% (p = 0.05). Overall, lesion geometry was more informative in the interferon group, EDSS and sex were more important for the placebo cohort. Alongside standard demographic and clinical measures, both lesion geometry and grey matter based information can aid prediction of conversion to CDMS.


Assuntos
Progressão da Doença , Substância Cinzenta/patologia , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Máquina de Vetores de Suporte , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Ensaios Clínicos Controlados Aleatórios como Assunto
11.
Neuroimage Clin ; 9: 555-63, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26640767

RESUMO

The psychosis high-risk state is accompanied by alterations in functional brain activity during working memory processing. We used binary automatic pattern-classification to discriminate between the at-risk mental state (ARMS), first episode psychosis (FEP) and healthy controls (HCs) based on n-back WM-induced brain activity. Linear support vector machines and leave-one-out-cross-validation were applied to fMRI data of matched ARMS, FEP and HC (19 subjects/group). The HC and ARMS were correctly classified, with an accuracy of 76.2% (sensitivity 89.5%, specificity 63.2%, p = 0.01) using a verbal working memory network mask. Only 50% and 47.4% of individuals were classified correctly for HC vs. FEP (p = 0.46) or ARMS vs. FEP (p = 0.62), respectively. Without mask, accuracy was 65.8% for HC vs. ARMS (p = 0.03) and 65.8% for HC vs. FEP (p = 0.0047), and 57.9% for ARMS vs. FEP (p = 0.18). Regions in the medial frontal, paracingulate, cingulate, inferior frontal and superior frontal gyri, inferior and superior parietal lobules, and precuneus were particularly important for group separation. These results suggest that FEP and HC or FEP and ARMS cannot be accurately separated in small samples under these conditions. However, ARMS can be identified with very high sensitivity in comparison to HC. This might aid classification and help to predict transition in the ARMS.


Assuntos
Encéfalo/fisiopatologia , Transtornos da Memória/etiologia , Memória de Curto Prazo/fisiologia , Transtornos Psicóticos/classificação , Transtornos Psicóticos/complicações , Adolescente , Análise de Variância , Encéfalo/irrigação sanguínea , Mapeamento Encefálico , Criança , Feminino , Seguimentos , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos , Sintomas Prodrômicos , Escalas de Graduação Psiquiátrica , Transtornos Psicóticos/diagnóstico , Fatores de Risco
12.
Med Image Comput Comput Assist Interv ; 17(Pt 2): 797-804, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25485453

RESUMO

Magnetic resonance imaging (MRI) has become an essential tool in the diagnosis and managing of Multiple Sclerosis (MS). Currently, the assessment of MS is based on a combination of clinical scores and subjective rating of lesion images by clinicians. In this work we present an objective 5-way classification of MS disease subtype as well as a comparison between three different approaches. First we propose two spatially informed models, a Bayesian Spatial Generalized Linear Mixed Model (BSGLMM) and a Log Gaussian Cox Process (LGCP). The BSGLMM accounts for the binary nature of lesion maps and the spatial dependence between neighboring voxels, and the LGCP accounts for the random spatial variation in lesion location. Both improve upon mass univariate analyses that ignore spatial dependence and rely on some level of arbitrarily defined smoothing of the data. As a comparison, we consider a machine learning approach based on multi-class support vector machine (SVM). For the SVM classification scheme, unlike previous work, we use a large number of quantitative features derived from three MRI sequences in addition to traditional demographic and clinical measures. We show that the spatial models outperform standard approaches with average prediction accuracies of up to 85%.


Assuntos
Algoritmos , Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Interpretação de Imagem Assistida por Computador/métodos , Esclerose Múltipla/classificação , Esclerose Múltipla/patologia , Reconhecimento Automatizado de Padrão/métodos , Simulação por Computador , Humanos , Aumento da Imagem/métodos , Modelos Anatômicos , Modelos Neurológicos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA