Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36616327

RESUMO

The weed Solidago canadensis L. poses a global threat to the environment as it spreads uncontrollably on roadsides, in forests, fields, meadows, and farmland. Goldenrod emits toxic substances that suppress other plants on the site, displacing wild ones. Thus, goldenrod conquers huge areas very quickly. The use of herbicides and mechanical methods does not solve the problem of the spontaneous spread of goldenrod. On the other hand, many scientists consider goldenrod as a valuable source of biologically active substances: flavonoids, phenolic compounds, vitamins, etc. In this study, we consider Solidago plants as a promising, free (cheap), and renewable substrate for the production of methane gas. The goal of the study was to identify the main patterns of degradation of the Solidago canadensis L. plant by methane-producing and sulfate-reducing bacteria with methane gas production and simultaneous detoxification of toxic copper. The composition of the gas phase was monitored by gas chromatography. The pH and redox potential parameters were determined potentiometrically; metal concentrations were measured by photometry. The concentration of flavonoids, sugars and phenolic compounds in plant biomass was determined according to well-known protocols. As a result of the study, high efficiencies of methane degradation in the Solidago plant and copper detoxification were obtained. Methane yield has reached the value of 68.2 L kg-1 TS of Solidago canadensis L. biomass. The degradation coefficient (Kd) was also high at 21.4. The Cu(II) was effectively immobilized by methanogens and sulfate reducers during the goldenrod degradation at the initial concentrations of 500 mg L-1. Thus, a new method of beneficial application of invasive plants was presented. The result confirms the possibility of using methanogenic microorganisms to produce methane gas from invasive weeds and detoxification of toxic metals.

2.
Microbiol Resour Announc ; 9(34)2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32816975

RESUMO

This study presents high-quality draft genome assemblies of six bacterial strains isolated from the roots of wheat grown in soil contaminated with cadmium. The results of this study will help to elucidate at the molecular level how heavy metals affect interactions between beneficial rhizobacteria and crop plants.

3.
Curr Res Microb Sci ; 1: 44-52, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34841301

RESUMO

Environmental copper pollution causes major destruction to ecological systems, which require the development of environmentally friendly biotechnological, in particular, microbial methods for copper removal. These methods rely on the availability of microorganisms resistant to high levels of copper. Here we isolated four bacterial strains with record resistance to up to 1.0 M Cu(II). The strains were isolated from ecologically diverse soil samples, and their genomes were sequenced. A 16S rRNA sequence-based phylogenetic analysis identified that all four isolates belong to the genus Pseudomonas. Particularly, strains UKR1 and UKR2 isolated from Kyiv region in Ukraine were identified as P. lactis and P. panacis, respectively, and strains UKR3 and UKR4 isolated from Svalbard Island in the Arctic Ocean and Galindez Island in Antarctica, respectively, were identified as P. veronii. Initial in-silico screening for genes encoding copper resistance mechanisms showed that all four strains encode copper resistance proteins CopA, CopB, CopD, CopA3, CopZ, as well as two-component regulatory system CusRS, all known to be associated with metal resistance in Pseudomonas genus. Further detailed studies will aim to characterize the full genomic potential of the isolates to enable their application for copper bioremediation in contaminated soils and industrial wastewaters.

4.
World J Microbiol Biotechnol ; 30(4): 1387-98, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24277323

RESUMO

Antarctic plants are stable specific microenvironments for microbial colonization that are still less explored. In this study, we investigated cultivable heterotrophic bacteria and yeasts dominating in plant samples collected from different terrestrial biotopes near Ukrainian Antarctic Base on Galindez Island, maritime Antarctica. Phylogenetic analysis revealed affiliation of the bacterial isolates to genera Pseudomonas, Stenotrophomonas, Brevundimonas, Sporosarcina, Dermacoccus, Microbacterium, Rothia and Frondihabitans, and the yeast isolates to genera Rhodosporidium, Cryptococcus, Leucosporidiella, Candida and Exophiala. Some ecophysiological properties of isolated strains were determined that are important in response to different stresses such as psychro- and halotolerance, UV-resistance and production of hydrolytic enzymes. The majority of isolates (88 %) was found to be psychrotolerant; all are halotolerant. Significant differences in survival subsequent to UV-C radiation were observed among the isolates, as measured by culturable counts. For the bacterial isolates, lethal doses in the range 80-600 J m⁻² were determined, and for the yeast isolates--in the range 300-1,000 J m⁻². Dermacoccus profundi U9 and Candida davisiana U6 were found as most UV resistant among the bacterial and yeast isolates, respectively. Producers of caseinase, gelatinase, ß-glucosidase, and cellulase were detected. To the best of our knowledge, this is the first report on isolation of UV resistant strain D. profundi, and Frondihabitans strain from Antarctica, and on detection of cellulase activity in Antarctic yeast strain C. davisiana. The results obtained contribute to clarifying adaptation strategies of Antarctic microbiota and its possible role in functional stability of Antarctic biocenoses. Stress tolerant strains were detected that are valuable for ecological and applied studies.


Assuntos
Bactérias/crescimento & desenvolvimento , Fenômenos Fisiológicos Bacterianos , Biota , Fungos/fisiologia , Filogenia , Plantas/microbiologia , Regiões Antárticas , Bactérias/classificação , Bactérias/isolamento & purificação , Técnicas de Tipagem Bacteriana , DNA Ribossômico/química , DNA Ribossômico/genética , Fungos/classificação , Fungos/crescimento & desenvolvimento , Fungos/isolamento & purificação , Genes de RNAr , Técnicas de Tipagem Micológica , RNA Bacteriano/genética , RNA Fúngico/genética , RNA Ribossômico/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA