Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Int J Mol Sci ; 25(19)2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39409152

RESUMO

Genomic-oriented oncology has improved tumor classification, treatment options, and patient outcomes. However, genetic heterogeneity, tumor cell plasticity, and the ability of cancer cells to hijack the tumor microenvironment (TME) represent a major roadblock for cancer eradication. Recent biotechnological advances in organotypic cell cultures have revolutionized biomedical research, opening new avenues to explore the use of cancer organoids in functional precision oncology, especially when genomics alone is not a determinant. Here, we outline the potential and the limitations of tumor organoids in preclinical and translational studies with a particular focus on lung cancer pathogenesis, highlighting their relevance in predicting therapy response, evaluating treatment toxicity, and designing novel anticancer strategies. Furthermore, we describe innovative organotypic coculture systems to dissect the crosstalk with the TME and to test the efficacy of different immunotherapy approaches, including adoptive cell therapy. Finally, we discuss the potential clinical relevance of microfluidic mini-organ technology, capable of reproducing tumor vasculature and the dynamics of tumor initiation and progression, as well as immunomodulatory interactions among tumor organoids, cancer-associated fibroblasts (CAFs) and immune cells, paving the way for next-generation immune precision oncology.


Assuntos
Neoplasias , Organoides , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Organoides/patologia , Animais , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Imunoterapia/métodos , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Fibroblastos Associados a Câncer/imunologia
2.
EMBO J ; 43(5): 780-805, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38316991

RESUMO

Inflammation is a common condition of prostate tissue, whose impact on carcinogenesis is highly debated. Microbial colonization is a well-documented cause of a small percentage of prostatitis cases, but it remains unclear what underlies the majority of sterile inflammation reported. Here, androgen- independent fluctuations of PSA expression in prostate cells have lead us to identify a prominent function of the Transient Receptor Potential Cation Channel Subfamily M Member 8 (TRPM8) gene in sterile inflammation. Prostate cells secret TRPM8 RNA into extracellular vesicles (EVs), which primes TLR3/NF-kB-mediated inflammatory signaling after EV endocytosis by epithelial cancer cells. Furthermore, prostate cancer xenografts expressing a translation-defective form of TRPM8 RNA contain less collagen type I in the extracellular matrix, significantly more infiltrating NK cells, and larger necrotic areas as compared to control xenografts. These findings imply sustained, androgen-independent expression of TRPM8 constitutes as a promoter of anticancer innate immunity, which may constitute a clinically relevant condition affecting prostate cancer prognosis.


Assuntos
Neoplasias da Próstata , Canais de Cátion TRPM , Humanos , Masculino , Androgênios , Inflamação/genética , Fator Regulador 3 de Interferon , Proteínas de Membrana , NF-kappa B/genética , Neoplasias da Próstata/genética , Receptor 3 Toll-Like/genética , Canais de Cátion TRPM/genética , Animais
3.
Cancers (Basel) ; 15(10)2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37345079

RESUMO

Cancer cell dissemination is sustained by cell-autonomous and non-cell-autonomous functions. To disentangle the role of HGF (Hepatocyte Growth Factor) and MET ligand/receptor axis in this complex process, we genetically knocked out the MET gene in cancer cells in which MET is not the oncogenic driver. In this way, we evaluated the contribution of the HGF/MET axis to cancer cell dissemination independently of its direct activities in cells of the tumor microenvironment. The lack of MET expression in MET-/- cells has been proved by molecular characterization. From a functional point of view, HGF stimulation of MET-/- cancer cells was ineffective in eliciting intracellular signaling and in sustaining biological functions predictive of malignancy in vitro (i.e., anchorage-independent growth, invasion, and survival in the absence of matrix adhesion). Cancer cell dissemination was assessed in vivo, evaluating: (i) the ability of MET-/- lung carcinoma cells to colonize the lungs following intravenous injection and (ii) the spontaneous dissemination to distant organs of MET-/- pancreatic carcinoma cells upon orthotopic injection. In both experimental models, MET ablation affects the time of onset, the number, and the size of metastatic lesions. These results define a crucial contribution of the HGF/MET axis to cell-autonomous functions driving the metastatic process.

4.
J Exp Clin Cancer Res ; 42(1): 120, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37170152

RESUMO

BACKGROUND: MET-driven acquired resistance is emerging with unanticipated frequency in patients relapsing upon molecular therapy treatments. However, the determination of MET amplification remains challenging using both standard and next-generation sequencing-based methodologies. Liquid biopsy is an effective, non-invasive approach to define cancer genomic profiles, track tumor evolution over time, monitor treatment response and detect molecular resistance in advance. Circular RNAs (circRNAs), a family of RNA molecules that originate from a process of back-splicing, are attracting growing interest as potential novel biomarkers for their stability in body fluids. METHODS: We identified a circRNA encoded by the MET gene (circMET) and exploited blood-derived cell-free RNA (cfRNA) and matched tumor tissues to identify, stratify and monitor advanced cancer patients molecularly characterized by high MET activity, generally associated with genomic amplification. RESULTS: Using publicly available bioinformatic tools, we discovered that the MET locus transcribes several circRNA molecules, but only one candidate, circMET, was particularly abundant. Deeper molecular analysis revealed that circMET levels positively correlated with MET expression and activity, especially in MET-amplified cells. We developed a circMET-detection strategy and, in parallel, we performed standard FISH and IHC analyses in the same specimens to assess whether circMET quantification could identify patients displaying high MET activity. Longitudinal monitoring of circMET levels in the plasma of selected patients revealed the early emergence of MET amplification as a mechanism of acquired resistance to molecular therapies. CONCLUSIONS: We found that measurement of circMET levels allows identification and tracking of patients characterized by high MET activity. Circulating circMET (ccMET) detection and analysis could be a simple, cost-effective, non-invasive approach to better implement patient stratification based on MET expression, as well as to dynamically monitor over time both therapy response and clonal evolution during treatment.


Assuntos
Neoplasias , RNA Circular , Humanos , Biomarcadores , Biologia Computacional , Neoplasias/genética , RNA/genética , RNA/metabolismo , RNA Circular/genética
5.
Crit Rev Oncol Hematol ; 184: 103966, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36925092

RESUMO

The identification of actionable targets in oncogene-addicted non-small cell lung cancer (NSCLC) has fueled biomarker-directed strategies, especially in advanced stage disease. Despite the undeniable success of molecular targeted therapies, duration of clinical response is relatively short-lived. While extraordinary efforts have defined the complexity of tumor architecture and clonal evolution at the genetic level, not equal interest has been given to the dynamic mechanisms of phenotypic adaptation engaged by cancer during treatment. At the clinical level, molecular targeted therapy of EGFR-mutant and ALK-rearranged tumors often results in epithelial-to-mesenchymal transition (EMT) and histological transformation of the original adenocarcinoma without the acquisition of additional genetic lesions, thus limiting subsequent therapeutic options and patient outcome. Here we provide an overview of the current understanding of the genetic and non-genetic molecular circuits governing this phenomenon, presenting current strategies and potentially innovative therapeutic approaches to interfere with lung cancer cell plasticity.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Antineoplásicos/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Oncogenes , Mutação
6.
Clin Cancer Res ; 29(3): 621-634, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36165915

RESUMO

PURPOSE: Antibodies against the lymphocyte PD-1 (aPD-1) receptor are cornerstone agents for advanced non-small cell lung cancer (NSCLC), based on their ability to restore the exhausted antitumor immune response. Our study reports a novel, lymphocyte-independent, therapeutic activity of aPD-1 against NSCLC, blocking the tumor-intrinsic PD-1 receptors on chemoresistant cells. EXPERIMENTAL DESIGN: PD-1 in NSCLC cells was explored in vitro at baseline, including stem-like pneumospheres, and following treatment with cisplatin both at transcriptional and protein levels. PD-1 signaling and RNA sequencing were assessed. The lymphocyte-independent antitumor activity of aPD-1 was explored in vitro, by PD-1 blockade and stimulation with soluble ligand (PD-L1s), and in vivo within NSCLC xenograft models. RESULTS: We showed the existence of PD-1+ NSCLC cell subsets in cell lines and large in silico datasets (Cancer Cell Line Encyclopedia and The Cancer Genome Atlas). Cisplatin significantly increased PD-1 expression on chemo-surviving NSCLC cells (2.5-fold P = 0.0014), while the sequential treatment with anti-PD-1 Ab impaired their recovery after chemotherapy. PD-1 was found to be associated with tumor stemness features. PD-1 expression was enhanced in NSCLC stem-like pneumospheres (P < 0.0001), significantly promoted by stimulation with soluble PD-L1 (+27% ± 4, P < 0.0001) and inhibited by PD-1 blockade (-30% ± 3, P < 0.0001). The intravenous monotherapy with anti-PD-1 significantly inhibited tumor growth of NSCLC xenografts in immunodeficient mice, without the contribution of the immune system, and delayed the occurrence of chemoresistance when combined with cisplatin. CONCLUSIONS: We report first evidence of a novel lymphocyte-independent activity of anti-PD-1 antibodies in NSCLC, capable of inhibiting chemo-surviving NSCLC cells and exploitable to contrast disease relapses following chemotherapy. See related commentary by Augustin et al., p. 505.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Camundongos , Animais , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Recidiva Local de Neoplasia , Linfócitos/metabolismo , Linhagem Celular Tumoral
8.
Front Oncol ; 12: 835642, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574376

RESUMO

Rhabdomyosarcoma (RMS) is a pediatric myogenic soft tissue sarcoma. The Fusion-Positive (FP) subtype expresses the chimeric protein PAX3-FOXO1 (P3F) while the Fusion-Negative (FN) is devoid of any gene translocation. FP-RMS and metastatic FN-RMS are often unresponsive to conventional therapy. Therefore, novel therapeutic approaches are needed to halt tumor progression. NOTCH signaling has oncogenic functions in RMS and its pharmacologic inhibition through γ-secretase inhibitors blocks tumor growth in vitro and in vivo. Here, we show that NOTCH signaling blockade resulted in the up-regulation and phosphorylation of the MET oncogene in both RH30 (FP-RMS) and RD (FN-RMS) cell lines. Pharmacologic inhibition of either NOTCH or MET signaling slowed proliferation and restrained cell survival compared to control cells partly by increasing Annexin V and CASP3/7 activation. Co-treatment with NOTCH and MET inhibitors significantly amplified these effects and enhanced PARP1 cleavage in both cell lines. Moreover, it severely hampered cell migration, colony formation, and anchorage-independent growth compared to single-agent treatments in both cell lines and significantly prevented the growth of FN-RMS cells grown as spheroids. Collectively, our results unveil the overexpression of the MET oncogene by NOTCH signaling targeting in RMS cells and show that MET pathway blockade sensitizes them to NOTCH inhibition.

9.
Virchows Arch ; 481(2): 233-244, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35461395

RESUMO

The standard front-line treatment for pleural mesothelioma (PM) is pemetrexed-based chemotherapy, whose major target is thymidylate synthase (TS). In several cancer models, miR-215 and miR-375 have been shown to target TS, while information on these miRNAs in PM are still limited although suggest their role in epithelial to mesenchymal transition. Seventy-one consecutive PM tissues (4 biphasic, 7 sarcomatoid, and 60 epithelioid types) and 16 commercial and patient-derived PM cell lines were screened for TS, miR-215, and miR-375 expression. REN and 570B cells were selected for miR-215 and miR-375 transient transfections to test TS modulation. ZEB1 protein expression in tumor samples was also tested. Moreover, genetic profile was investigated by means of BAP1 and p53 immunohistochemistry. Expression of both miR-215 and miR-375 was significantly higher in epithelioid histotype. Furthermore, inverse correlation between TS protein and both miR-215 and miR-375 expression was found. Efficiently transfected REN and 570B cell lines overexpressing miR-215 and miR-375 showed decreased TS protein levels. Epithelioid PM with a mesenchymal component highlighted by reticulin stain showed significantly higher TS and ZEB1 protein and lower miRNA expression. A better survival was recorded for BAP1 lost/TS low cases. Our data indicate that miR-215 and miR-375 are involved in TS regulation as well as in epithelial-to-mesenchymal transition in PM.


Assuntos
Transição Epitelial-Mesenquimal , Mesotelioma Maligno , MicroRNAs , Neoplasias Pleurais , Timidilato Sintase , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Mesotelioma Maligno/genética , Mesotelioma Maligno/patologia , MicroRNAs/genética , Neoplasias Pleurais/genética , Neoplasias Pleurais/patologia , Timidilato Sintase/genética , Timidilato Sintase/metabolismo
10.
J Exp Clin Cancer Res ; 41(1): 75, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35197103

RESUMO

BACKGROUND: The combination of pemetrexed and cisplatin remains the reference first-line systemic therapy for malignant pleural mesothelioma (MPM). Its activity is moderate because of tumor aggressiveness, immune-suppressive environment and resistance to chemotherapy-induced immunogenic cell death (ICD). Preliminary and limited findings suggest that MPM cells have deregulated ubiquitination and proteasome activities, although proteasome inhibitors achieved disappointing clinical results. METHODS: Here, we investigated the role of the E3-ubiquitin ligase SKP/Cullin/F-box (SCF) complex in cell cycle progression, endoplasmic reticulum (ER)/proteostatic stress and ICD in MPM, and the therapeutic potential of the neddylation/SCF complex inhibitor MLN4924/Pevonedistat. RESULTS: In patient-derived MPM cultures and syngenic murine models, MLN4924 and cisplatin showed anti-tumor effects, regardless of MPM histotype and BAP1 mutational status, increasing DNA damage, inducing S- and G2/M-cell cycle arrest, and apoptosis. Mechanistically, by interfering with the neddylation of cullin-1 and ubiquitin-conjugating enzyme UBE2M, MLN4924 blocks the SCF complex activity and triggers an ER stress-dependent ICD, which activated anti-MPM CD8+T-lymphocytes. The SKP2 component of SCF complex was identified as the main driver of sensitivity to MLN4924 and resistance to cisplatin. These findings were confirmed in a retrospective MPM patient series, where SKP2 high levels were associated with a worse response to platinum-based therapy and inferior survival. CONCLUSIONS: We suggest that the combination of neddylation inhibitors and cisplatin could be worth of further investigation in the clinical setting for MPM unresponsive to cisplatin. We also propose SKP2 as a new stratification marker to determine the sensitivity to cisplatin and drugs interfering with ubiquitination/proteasome systems in MPM.


Assuntos
Antineoplásicos/uso terapêutico , Cisplatino/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Mesotelioma Maligno/tratamento farmacológico , Pemetrexede/uso terapêutico , Proteínas Quinases Associadas a Fase S/metabolismo , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cisplatino/farmacologia , Inibidores Enzimáticos/farmacologia , Humanos , Camundongos , Pemetrexede/farmacologia
11.
Cancers (Basel) ; 13(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066159

RESUMO

BACKGROUND: Malignant pleural mesothelioma (MPM) is a highly aggressive cancer generally diagnosed at an advanced stage and characterized by a poor prognosis. The absence of alterations in druggable kinases, together with an immune-suppressive tumor microenvironment, limits the use of molecular targeted therapies, making the treatment of MPM particularly challenging. Here we investigated the in vitro susceptibility of MPM to lurbinectedin (PM01183), a marine-derived drug that recently received accelerated approval by the FDA for the treatment of patients with metastatic small cell lung cancer with disease progression on or after platinum-based chemotherapy. METHODS: A panel of primary MPM cultures, resembling the three major MPM histological subtypes (epithelioid, sarcomatoid, and biphasic), was characterized in terms of BAP1 status and histological markers. Subsequently, we explored the effects of lurbinectedin at nanomolar concentration on cell cycle, cell viability, DNA damage, genotoxic stress response, and proliferation. RESULTS: Stabilized MPM cultures exhibited high sensitivity to lurbinectedin independently from the BAP1 mutational status and histological classification. Specifically, we observed that lurbinectedin rapidly promoted a cell cycle arrest in the S-phase and the activation of the DNA damage response, two conditions that invariably resulted in an irreversible DNA fragmentation, together with strong apoptotic cell death. Moreover, the analysis of long-term treatment indicated that lurbinectedin severely impacts MPM transforming abilities in vitro. CONCLUSION: Overall, our data provide evidence that lurbinectedin exerts a potent antitumoral activity on primary MPM cells, independently from both the histological subtype and BAP1 alteration, suggesting its potential activity in the treatment of MPM patients.

12.
J Exp Clin Cancer Res ; 40(1): 136, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33863364

RESUMO

BACKGROUND: Oxidative stress is a hallmark of many cancers. The increment in reactive oxygen species (ROS), resulting from an increased mitochondrial respiration, is the major cause of oxidative stress. Cell fate is known to be intricately linked to the amount of ROS produced. The direct generation of ROS is also one of the mechanisms exploited by common anticancer therapies, such as chemotherapy. METHODS: We assessed the role of NFKBIA with various approaches, including in silico analyses, RNA-silencing and xenotransplantation. Western blot analyses, immunohistochemistry and RT-qPCR were used to detect the expression of specific proteins and genes. Immunoprecipitation and pull-down experiments were used to evaluate protein-protein interactions. RESULTS: Here, by using an in silico approach, following the identification of NFKBIA (the gene encoding IκBα) amplification in various cancers, we described an inverse correlation between IκBα, oxidative metabolism, and ROS production in lung cancer. Furthermore, we showed that novel IκBα targeting compounds combined with cisplatin treatment promote an increase in ROS beyond the tolerated threshold, thus causing death by oxytosis. CONCLUSIONS: NFKBIA amplification and IκBα overexpression identify a unique cancer subtype associated with specific expression profile and metabolic signatures. Through p65-NFKB regulation, IκBα overexpression favors metabolic rewiring of cancer cells and distinct susceptibility to cisplatin. Lastly, we have developed a novel approach to disrupt IκBα/p65 interaction, restoring p65-mediated apoptotic responses to cisplatin due to mitochondria deregulation and ROS-production.


Assuntos
Morte Celular/genética , Neoplasias Pulmonares/genética , Inibidor de NF-kappaB alfa/uso terapêutico , Estresse Oxidativo/genética , Humanos , Neoplasias Pulmonares/patologia , Inibidor de NF-kappaB alfa/farmacologia
13.
Int J Mol Sci ; 21(12)2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599901

RESUMO

Doxorubicin (Dox) is one of the most important first-line drugs used in osteosarcoma therapy. Multiple and not fully clarified mechanisms, however, determine resistance to Dox. With the aim of identifying new markers associated with Dox-resistance, we found a global up-regulation of small nucleolar RNAs (snoRNAs) in human Dox-resistant osteosarcoma cells. We investigated if and how snoRNAs are linked to resistance. After RT-PCR validation of snoRNAs up-regulated in osteosarcoma cells with different degrees of resistance to Dox, we overexpressed them in Dox-sensitive cells. We then evaluated Dox cytotoxicity and changes in genes relevant for osteosarcoma pathogenesis by PCR arrays. SNORD3A, SNORA13 and SNORA28 reduced Dox-cytotoxicity when over-expressed in Dox-sensitive cells. In these cells, GADD45A and MYC were up-regulated, TOP2A was down-regulated. The same profile was detected in cells with acquired resistance to Dox. GADD45A/MYC-silencing and TOP2A-over-expression counteracted the resistance to Dox induced by snoRNAs. We reported for the first time that snoRNAs induce resistance to Dox in human osteosarcoma, by modulating the expression of genes involved in DNA damaging sensing, DNA repair, ribosome biogenesis, and proliferation. Targeting snoRNAs or down-stream genes may open new treatment perspectives in chemoresistant osteosarcomas.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Osteossarcoma/tratamento farmacológico , RNA Nucleolar Pequeno/genética , Apoptose , Biomarcadores Tumorais/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Proliferação de Células , Humanos , Osteossarcoma/genética , Osteossarcoma/patologia , Células Tumorais Cultivadas
14.
Cell Mol Life Sci ; 77(22): 4449-4458, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32322927

RESUMO

The onco-suppressor p53 is a transcription factor that regulates a wide spectrum of genes involved in various cellular functions including apoptosis, cell cycle arrest, senescence, autophagy, DNA repair and angiogenesis. p53 and NF-κB generally have opposing effects in cancer cells. While p53 activity is associated with apoptosis induction, the stimulation of NF-κB has been demonstrated to promote resistance to programmed cell death. Although the transcription factor NF-κB family is considered as the master regulator of cancer development and maintenance, it has been mainly studied in relation to its ability to regulate p53. This has revealed the importance of the crosstalk between NF-κB, p53 and other crucial cell signaling pathways. This review analyzes the various mechanisms by which NF-κB regulates the activity of p53 and the role of p53 on NF-κB activity.


Assuntos
NF-kappa B/genética , Proteína Supressora de Tumor p53/genética , Animais , Regulação da Expressão Gênica/genética , Humanos , Transdução de Sinais/genética
15.
Cancers (Basel) ; 12(3)2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-32182763

RESUMO

Tumor suppressors play an important role in cancer pathogenesis and in the modulation of resistance to treatments. Loss of function of the proteins encoded by tumor suppressors, through genomic inactivation of the gene, disable all the controls that balance growth, survival, and apoptosis, promoting cancer transformation. Parallel to genetic impairments, tumor suppressor products may also be functionally inactivated in the absence of mutations/deletions upon post-transcriptional and post-translational modifications. Because restoring tumor suppressor functions remains the most effective and selective approach to induce apoptosis in cancer, the dissection of mechanisms of tumor suppressor inactivation is advisable in order to further augment targeted strategies. This review will summarize the role of tumor suppressors in chronic lymphocytic leukemia and attempt to describe how tumor suppressors can represent new hopes in our arsenal against chronic lymphocytic leukemia (CLL).

16.
J Cell Mol Med ; 24(2): 1650-1657, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31821686

RESUMO

The development of drugs able to target BTK, PI3k-delta and BCL2 has dramatically improved chronic lymphocytic leukaemia (CLL) therapies. However, drug resistance to these therapies has already been reported due to non-recurrent changes in oncogenic pathways and genes expression signatures. In this study, we investigated the cooperative role of the BCL2 inhibitor venetoclax and the BRD4 inhibitor JQ1. In particular, we found that JQ1 shows additional activity with venetoclax, in CLL cell lines and in ex vivo isolated primary CD19+ lymphocytes, arguing in favour of combination strategies. Lastly, JQ1 is also effective in venetoclax-resistant CLL cell lines. Together, our findings indicated that the BET inhibitor JQ1 could be a promising therapy in CLL, both as first-line therapy in combination with venetoclax and as second-line therapy, after the emergence of venetoclax-resistant clones.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Sulfonamidas/uso terapêutico , Fatores de Transcrição/antagonistas & inibidores , Azepinas/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Sulfonamidas/farmacologia , Fatores de Transcrição/metabolismo , Triazóis/farmacologia
17.
Transl Lung Cancer Res ; 9(6): 2629-2644, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33489823

RESUMO

Lung cancer currently stands out as both the most common and the most lethal type of cancer, the latter feature being partly explained by the fact that the majority of lung cancer patients already display advanced disease at the time of diagnosis. In recent years, the development of specific tyrosine kinase inhibitors (TKI) for the therapeutic benefit of patients harboring certain molecular aberrations and the introduction of prospective molecular profiling in the clinical practice have revolutionized the treatment of advanced non-small cell lung cancer (NSCLC). However, the identification of the best strategies to enhance treatment effectiveness and to avoid the critical phenomenon of drug tolerance and acquired resistance in patients with lung cancer still remains an unmet medical need. Circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) are two complementary approaches to define tumor heterogeneity and clonal evolution in a non-invasive manner and to perform functional studies on metastatic cells. Finally, the recent discovery that the tumor microenvironment architecture can be faithfully recapitulated in vitro represents a novel pre-clinical frontier with the potential to optimize more effective immunology-based precision therapies that could rapidly move forward to the clinic.

19.
Oncoimmunology ; 7(3): e1398874, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29399399

RESUMO

Systemic treatment of malignant pleural mesothelioma (MPM) is moderately active for the intrinsic pharmacological resistance of MPM cell and its ability to induce an immune suppressive environment. Here we showed that the expression of bromodomain (BRD) proteins BRD2, BRD4 and BRD9 was significantly higher in human primary MPM cells compared to normal mesothelial cells (HMC). Nanomolar concentrations of bromodomain inhibitors (BBIs) JQ1 or OTX015 impaired patient-derived MPM cell proliferation and induced cell-cycle arrest without affecting apoptosis. Importantly, BBIs primed MPM cells for immunogenic cell death, by increasing extracellular release of ATP and HMGB1, and by promoting membrane exposure of calreticulin and ERp57. Accordingly, BBIs activated dendritic cell (DC)-mediated phagocytosis and expansion of CD8+ T-lymphocyte clones endorsed with antitumor cytotoxic activity. BBIs reduced the expression of the immune checkpoint ligand PD-L1 in MPM cells; while both CD8+ and CD4+ T-lymphocytes co-cultured with JQ1-treated MPM cells decreased PD-1 expression, suggesting a disruption of the immune-suppressive PD-L1/PD-1 axis. Additionally, BBIs reduced the expansion of myeloid-derived suppressor cells (MDSC) induced by MPM cells. Finally, a preclinical model of MPM confirmed that the anti-tumor efficacy of JQ1 was largely due to its ability to restore an immune-active environment, by increasing intra-tumor DC and CD8+ T-lymphocytes, and decreasing MDSC. Thereby, we propose that, among novel drugs, BBIs should be investigated for MPM treatment for their combined activity on both tumor cells and surrounding immune-environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA