Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Nat Commun ; 15(1): 2259, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480707

RESUMO

The discrete and charge-separated nature of matter - electrons and nuclei - results in local electrostatic fields that are ubiquitous in nanoscale structures and relevant in catalysis, nanoelectronics and quantum nanoscience. Surface-averaging techniques provide only limited experimental access to these potentials, which are determined by the shape, material, and environment of the nanostructure. Here, we image the potential over adatoms, chains, and clusters of Ag and Au atoms assembled on Ag(111) and quantify their surface dipole moments. By focusing on the total charge density, these data establish a benchmark for theory. Our density functional theory calculations show a very good agreement with experiment and allow a deeper analysis of the dipole formation mechanisms, their dependence on fundamental atomic properties and on the shape of the nanostructures. We formulate an intuitive picture of the basic mechanisms behind dipole formation, allowing better design choices for future nanoscale systems such as single-atom catalysts.

2.
Rev Sci Instrum ; 94(4)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38081289

RESUMO

A high-current electron source for inverse photoemission spectroscopy is described. The source comprises a thermal cathode electron emission system, an electrostatic deflector-monochromator, and a lens system for variable kinetic energy (1.6-20 eV) at the target. When scaled to the energy resolution, the electron current is an order of magnitude higher than that of previously described electron sources developed in the context of electron energy loss spectroscopy. Surprisingly, the experimentally measured energy resolution turned out to be significantly better than calculated by standard programs, which include the electron-electron repulsion in the continuum approximation. The achieved currents are also significantly higher than predicted. We attribute this "inverse Boersch-effect" to a mechanism of velocity selection in the forward direction by binary electron-electron collisions.

3.
J Phys Chem C Nanomater Interfaces ; 127(28): 13817-13836, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37492192

RESUMO

A bold vision in nanofabrication is the assembly of functional molecular structures using a scanning probe microscope (SPM). This approach requires continuous monitoring of the molecular configuration during manipulation. Until now, this has been impossible because the SPM tip cannot simultaneously act as an actuator and an imaging probe. Here, we implement configuration monitoring using experimental data other than images collected during the manipulation process. We model the manipulation as a partially observable Markov decision process (POMDP) and approximate the actual configuration in real time using a particle filter. To achieve this, the models underlying the POMDP are precomputed and organized in the form of a finite-state automaton, allowing the use of complex atomistic simulations. We exemplify the configuration monitoring process and reveal structural motifs behind measured force gradients. The proposed methodology marks an important step toward the piece-by-piece creation of supramolecular structures in a robotic and possibly automated manner.

4.
Commun Chem ; 6(1): 136, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400714

RESUMO

Studying inorganic/organic hybrid systems is a stepping stone towards the design of increasingly complex interfaces. A predictive understanding requires robust experimental and theoretical tools to foster trust in the obtained results. The adsorption energy is particularly challenging in this respect, since experimental methods are scarce and the results have large uncertainties even for the most widely studied systems. Here we combine temperature-programmed desorption (TPD), single-molecule atomic force microscopy (AFM), and nonlocal density-functional theory (DFT) calculations, to accurately characterize the stability of a widely studied interface consisting of perylene-tetracarboxylic dianhydride (PTCDA) molecules on Au(111). This network of methods lets us firmly establish the adsorption energy of PTCDA/Au(111) via TPD (1.74 ± 0.10 eV) and single-molecule AFM (2.00 ± 0.25 eV) experiments which agree within error bars, exemplifying how implicit replicability in a research design can benefit the investigation of complex materials properties.

5.
Nat Commun ; 13(1): 5148, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36055995

RESUMO

When a molecule interacts chemically with a metal surface, the orbitals of the molecule hybridise with metal states to form the new eigenstates of the coupled system. Spatial overlap and energy matching are determining parameters of the hybridisation. However, since every molecular orbital does not only have a characteristic spatial shape, but also a specific momentum distribution, one may additionally expect a momentum matching condition; after all, each hybridising wave function of the metal has a defined wave vector, too. Here, we report photoemission orbital tomography measurements of hybrid orbitals that emerge from molecular orbitals at a molecule-on-metal interface. We find that in the hybrid orbitals only those partial waves of the original orbital survive which match the metal band structure. Moreover, we find that the conversion of the metal's surface state into a hybrid interface state is also governed by momentum matching constraints. Our experiments demonstrate the possibility to measure hybridisation momentum-selectively, thereby enabling deep insights into the complicated interplay of bulk states, surface states, and molecular orbitals in the formation of the electronic interface structure at molecule-on-metal hybrid interfaces.

6.
Sci Adv ; 8(29): eabn0819, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35867796

RESUMO

Tracing the modifications of molecules in surface chemical reactions benefits from the possibility to image their orbitals. While delocalized frontier orbitals with π character are imaged routinely with photoemission orbital tomography, they are not always sensitive to local chemical modifications, particularly the making and breaking of bonds at the molecular periphery. For such bonds, σ orbitals would be far more revealing. Here, we show that these orbitals can indeed be imaged in a remarkably broad energy range and that the plane wave approximation, an important ingredient of photoemission orbital tomography, is also well fulfilled for these orbitals. This makes photoemission orbital tomography a unique tool for the detailed analysis of surface chemical reactions. We demonstrate this by identifying the reaction product of a dehalogenation and cyclodehydrogenation reaction.

7.
J Phys Chem C Nanomater Interfaces ; 126(15): 6880-6891, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35493697

RESUMO

Molecular nanofabrication with a scanning probe microscope (SPM) is a promising route toward the prototyping of metastable functional molecular structures and devices which do not form spontaneously. The aspect of mechanical stability is crucial for such structures, especially if they extend into the third dimension vertical to the surface. A prominent example is freestanding molecules fabricated on a metal which can function as field emitters or electric field sensors. Improving the stability of such molecular configurations is an optimization task involving many degrees of freedom and therefore best tackled by computational nanostructure design. Here, we use density functional theory to study 3,4,9,10-perylene-tetracarboxylic dianhydride (PTCDA) standing on the Ag(111) surface as well as on the tip of a scanning probe microscope. We cast our results into a simple set of design principles for such metastable structures, the validity of which we subsequently demonstrate in two computational case studies. Our work proves the capabilities of computational nanostructure design in the field of metastable molecular structures and offers the intuition needed to fabricate new devices without tedious trial and error.

8.
J Phys Chem C Nanomater Interfaces ; 126(10): 5036-5045, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35330758

RESUMO

Hexacene, composed of six linearly fused benzene rings, is an organic semiconductor material with superior electronic properties. The fundamental understanding of the electronic and chemical properties is prerequisite to any possible application in devices. We investigate the orientation and interface properties of highly ordered hexacene monolayers on Ag(110) and Cu(110) with X-ray photoemission spectroscopy (XPS), photoemission orbital tomography (POT), X-ray absorption spectroscopy (XAS), low-energy electron diffraction (LEED), scanning tunneling microscopy (STM), and density functional theory (DFT). We find pronounced differences in the structural arrangement of the molecules and the electronic properties at the metal/organic interfaces for the two substrates. While on Cu(110) the molecules adsorb with their long molecular axis parallel to the high symmetry substrate direction, on Ag(110), hexacene adsorbs in an azimuthally slightly rotated geometry with respect to the metal rows of the substrate. In both cases, molecular planes are oriented parallel to the substrate. A pronounced charge transfer from both substrates to different molecular states affects the effective charge of different C atoms of the molecule. Through analysis of experimental and theoretical data, we found out that on Ag(110) the LUMO of the molecule is occupied through charge transfer from the metal, whereas on Cu(110) even the LUMO+1 receives a charge. Interface dipoles are determined to a large extent by the push-back effect, which are also found to differ significantly between 6A/Ag(110) and 6A/Cu(110).

9.
Rev Sci Instrum ; 93(1): 013702, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35104957

RESUMO

Multi-tip scanning tunneling microscopy (STM) is a powerful method to perform charge transport measurements at the nanoscale. With four STM tips positioned on the surface of a sample, four-point resistance measurements can be performed in dedicated geometric configurations. Here, we present an alternative to the most often used scanning electron microscope imaging to infer the corresponding tip positions. After the initial coarse positioning is monitored by an optical microscope, STM scanning itself is used to determine the inter-tip distances. A large STM overview scan serves as a reference map. Recognition of the same topographic features in the reference map and in small scale images with the individual tips allows us to identify the tip positions with an accuracy of about 20 nm for a typical tip spacing of ∼1µm. In order to correct for effects such as the non-linearity of the deflection, creep, and hysteresis of the piezoelectric elements of the STM, a careful calibration has to be performed.

10.
Sci Adv ; 7(46): eabj9751, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34757779

RESUMO

The part-by-part assembly of functional nanoscale machinery is a central goal of nanotechnology. With the recent fabrication of an isolated standing molecule with a scanning probe microscope, the third dimension perpendicular to the surface will soon become accessible to molecule-based construction. Beyond the flatlands of the surface, a wealth of structures and functionalities is waiting for exploration, but issues of stability are becoming more critical. Here, we combine scanning probe experiments with ab initio potential energy calculations to investigate the thermal stability of a prototypical standing molecule. We reveal its generic stabilization mechanism, a fine balance between covalent and van der Waals interactions including the latter's long-range screening by many-body effects, and find a remarkable agreement between measured and calculated stabilizing potentials. Beyond their relevance for the design and construction of three-dimensional molecular devices at surfaces, our results also indicate that standing molecules may serve as tunable mechanical gigahertz oscillators.

11.
Rev Sci Instrum ; 92(6): 063701, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243501

RESUMO

We present the design and performance of an ultra-high vacuum scanning tunneling microscope (STM) that uses adiabatic demagnetization of electron magnetic moments for controlling its operating temperature ranging between 30 mK and 1 K with an accuracy of up to 7 µK rms. At the same time, high magnetic fields of up to 8 T can be applied perpendicular to the sample surface. The time available for STM experiments at 50 mK is longer than 20 h, at 100 mK about 40 h. The single-shot adiabatic demagnetization refrigerator can be regenerated automatically within 7 h while keeping the STM temperature below 5 K. The whole setup is located in a vibrationally isolated, electromagnetically shielded laboratory with no mechanical pumping lines penetrating its isolation walls. The 1 K pot of the adiabatic demagnetization refrigeration cryostat can be operated silently for more than 20 days in a single-shot mode using a custom-built high-capacity cryopump. A high degree of vibrational decoupling together with the use of a specially designed minimalistic STM head provides outstanding mechanical stability, demonstrated by the tunneling current noise, STM imaging, and scanning tunneling spectroscopy measurements, all performed on an atomically clean Al(100) surface.

12.
J Phys Chem Lett ; 12(27): 6320-6325, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34228474

RESUMO

Determination of the molecular Kondo temperature (TK) poses a challenge in most cases when the experimental temperature cannot be tuned to a sufficient extent. We show how this ambiguity can be resolved if additional control parameters are present, such as magnetic field and mechanical gating. We record the evolution of the differential conductance by lifting an individual molecule from the metal surface with the tip of a scanning tunneling microscope. By fitting the measured conductance spectra with the single impurity Anderson model we are able to demonstrate that the lifting tunes the junction continuously from the strongly correlated Kondo-singlet to the free spin-1/2 ground state. In the crossover regime, where TK is similar to the temperature of experiment, the fitting yields ambiguous estimates of TK varying by an order of magnitude. We show that analysis of the conductance measured in two distinct external magnetic fields can be used to resolve this problem.

13.
J Phys Chem C Nanomater Interfaces ; 125(5): 2918-2925, 2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33603943

RESUMO

Longer acenes such as heptacene are promising candidates for optoelectronic applications but are unstable in their bulk structure as they tend to dimerize. This makes the growth of well-defined monolayers and films problematic. In this article, we report the successful preparation of a highly oriented monolayer of heptacene on Ag(110) by thermal cycloreversion of diheptacenes. In a combined effort of angle-resolved photoemission spectroscopy and density functional theory (DFT) calculations, we characterize the electronic and structural properties of the molecule on the surface in detail. Our investigations allow us to unambiguously confirm the successful fabrication of a highly oriented complete monolayer of heptacene and to describe its electronic structure. By comparing experimental momentum maps of photoemission from frontier orbitals of heptacene and pentacene, we shed light on differences between these two acenes regarding their molecular orientation and energy-level alignment on the metal surfaces.

14.
Angew Chem Int Ed Engl ; 60(10): 5078-5082, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33245197

RESUMO

Metalation and self-metalation reactions of porphyrins on oxide surfaces have recently gained interest. The mechanism of porphyrin self-metalation on oxides is, however, far from being understood. Herein, we show by a combination of results obtained with scanning tunneling microscopy, photoemission spectroscopy, and DFT computations, that the self-metalation of 2H-tetraphenylporphyrin on the surface of ultrathin MgO(001) films is promoted by charge transfer. By tuning the work function of the MgO(001)/Ag(001) substrate, we are able to control the charge and the metalation state of the porphyrin molecules on the surface.

16.
ACS Nano ; 14(11): 15766-15775, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33186031

RESUMO

We revisit the question of kekulene's aromaticity by focusing on the electronic structure of its frontier orbitals as determined by angle-resolved photoemission spectroscopy. To this end, we have developed a specially designed precursor, 1,4,7(2,7)-triphenanthrenacyclononaphane-2,5,8-triene, which allows us to prepare sufficient quantities of kekulene of high purity directly on a Cu(111) surface, as confirmed by scanning tunneling microscopy. Supported by density functional calculations, we determine the orbital structure of kekulene's highest occupied molecular orbital by photoemission tomography. In agreement with a recent aromaticity assessment of kekulene based solely on C-C bond lengths, we conclude that the π-conjugation of kekulene is better described by the Clar model rather than a superaromatic model. Thus, by exploiting the capabilities of photoemission tomography, we shed light on the question which consequences aromaticity holds for the frontier electronic structure of a π-conjugated molecule.

17.
Sci Adv ; 6(36)2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32917594

RESUMO

The ability to handle single molecules as effectively as macroscopic building blocks would enable the construction of complex supramolecular structures inaccessible to self-assembly. The fundamental challenges obstructing this goal are the uncontrolled variability and poor observability of atomic-scale conformations. Here, we present a strategy to work around both obstacles and demonstrate autonomous robotic nanofabrication by manipulating single molecules. Our approach uses reinforcement learning (RL), which finds solution strategies even in the face of large uncertainty and sparse feedback. We demonstrate the potential of our RL approach by removing molecules autonomously with a scanning probe microscope from a supramolecular structure. Our RL agent reaches an excellent performance, enabling us to automate a task that previously had to be performed by a human. We anticipate that our work opens the way toward autonomous agents for the robotic construction of functional supramolecular structures with speed, precision, and perseverance beyond our current capabilities.

18.
Sci Rep ; 10(1): 2816, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32071388

RESUMO

One of the hallmarks of topological insulators (TIs), the intrinsic spin polarisation in the topologically protected surface states, is investigated at room temperature in-situ by means of four-probe scanning tunnelling microscopy (STM) for a BiSbTe3 thin film. To achieve the required precision of tip positions for measuring a spin signal, a precise positioning method employing STM scans of the local topography with each individual tip is demonstrated. From the transport measurements, the spin polarisation in the topological surface states (TSS) is estimated as p ~ 0.3 - 0.6, which is close to the theoretical limit.

19.
J Phys Chem Lett ; 10(21): 6438-6445, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31573816

RESUMO

The electronic and geometric structures of tetracene films on Ag(110) and Cu(110) have been studied with photoemission tomography and compared to that of pentacene. Despite similar energy level alignment of the two oligoacenes on these surfaces revealed by conventional ultraviolet photoelectron spectroscopy, the momentum-space resolved photoemission tomography reveals a significant difference in both structural and electronic properties of tetracene and pentacene films. Particularly, the saturated monolayer of tetracene on Ag(110) is found to consist of two molecular species that, despite having the same orientation, are electronically very different-while one molecule remains neutral, another is charged because of electron donation from the substrate.

20.
Nat Commun ; 10(1): 3189, 2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31320632

RESUMO

The determination of reaction pathways and the identification of reaction intermediates are key issues in chemistry. Surface reactions are particularly challenging, since many methods of analytical chemistry are inapplicable at surfaces. Recently, atomic force microscopy has been employed to identify surface reaction intermediates. While providing an excellent insight into the molecular backbone structure, atomic force microscopy is less conclusive about the molecular periphery, where adsorbates tend to react with the substrate. Here we show that photoemission tomography is extremely sensitive to the character of the frontier orbitals. Specifically, hydrogen abstraction at the molecular periphery is easily detected, and the precise nature of the reaction intermediates can be determined. This is illustrated with the thermally induced reaction of dibromo-bianthracene to graphene which is shown to proceed via a fully hydrogenated bisanthene intermediate. We anticipate that photoemission tomography will become a powerful companion to other techniques in the study of surface reaction pathways.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA