Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Pollut ; 287: 117605, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34171726

RESUMO

The acidogenic fermentation of dairy wastewater (DW) was evaluated for carboxylic acids (CA) production, investigating the influence of substrate/microorganism (S/X) ratio and applying different mathematical models to the bioproduct formation data. The experiments were performed in batch reactors for 28 days, and four S/X ratios were tested (0.8, 1.2, 1.6, and 1.9 gCOD gVSS-1). The S/X ratio increase did not influence the percentage of DW conversion into carboxylic acids (42-44%), but the productivity was positively affected (100-200% in general). Acetic acid was the CA formed in the highest concentration for all experiments, followed by propionic and butyric acids. Exponential models were better suited to describe this kinetics process. Therefore, according to the estimated kinetic parameters, the S/X ratio 1.6 was more suitable for CA production from acidogenic fermentation of dairy wastewater, in which the concentrations of longer CA, such as propionate and butyrate, were formed in higher quantities. In addition, it was determined a correlation between the S/X ratio and kinetic parameters like degradation/production rate constant (K) and maximum productivity rate (µm).


Assuntos
Ácidos Carboxílicos , Águas Residuárias , Ácido Acético , Reatores Biológicos , Fermentação , Cinética
2.
J Environ Manage ; 291: 112718, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33962280

RESUMO

Aerobic Granular Sludge (AGS) is a biological treatment technology that has been extensively studied in the last decade. The possibility of resource recovery has always been highlighted in these systems, but real-scale applications are still scarce. Therefore, this paper aimed to present a systematic review of resources recovery such as water, energy, chemicals, raw materials, and nutrients from AGS systems, also analyzing aspects of engineering and economic viability. In the solid phase, sludge application in agriculture is an interesting possibility. However, the biosolids' metal concentration (the granules have high adsorption capacity due to the high concentration of extracellular polymeric substances, EPS) may be an issue. Another possibility is the recovery of Polyhydroxyalkanoates (PHAs) and Alginate-like exopolymers (bio-ALE) in the solid phase, emphasizing the last one, which has already been made in some Wastewater Treatment Plants (WWTPs), named and patented as Kaumera® process. The Operational Expenditure (OPEX) can be reduced by 50% in the WWTP when recovery of ALE is made. The ALE recovery reduced sludge yield by up to 35%, less CO2 emissions, and energy saving. Finally, the discharged sludge can also be evaluated to be used for energetic purposes via anaerobic digestion (AD) or combustion. However, the AD route has faced difficulties due to the low biodegradability of aerobic granules.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Aerobiose , Reatores Biológicos , Matriz Extracelular de Substâncias Poliméricas , Águas Residuárias
3.
Chemosphere ; 274: 129881, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33582539

RESUMO

Lately, wastewater treatment plants are much often being designed as wastewater-resource factories inserted in circular cities. Among biological treatment technologies, aerobic granular sludge (AGS), considered an evolution of activated sludge (AS), has received great attention regarding its resource recovery potential. This review presents the state-of-the-art concerning the influence of operational parameters on the recovery of alginate-like exopolysaccharides (ALE), tryptophan, phosphorus, and polyhydroxyalkanoates (PHA) from AGS systems. The carbon to nitrogen ratio was identified as a parameter that plays an important role for the optimal production of ALE, tryptophan, and PHA. The sludge retention time effect is more pronounced for the production of ALE and tryptophan. Additionally, salinity levels in the bioreactors can potentially be manipulated to increase ALE and phosphorus yields simultaneously. Some existing knowledge gaps in the scientific literature concerning the recovery of these resources from AGS were also identified. Regarding industrial applications, tryptophan has the longest way to go. On the other hand, ALE production/recovery could be considered the most mature process if we take into account that existing alternatives for phosphorus and PHA production/recovery are optimized for activated sludge rather than granular sludge. Consequently, to maintain the same effectiveness, these processes likely could not be applied to AGS without undergoing some modification. Therefore, investigating to what extent these adaptations are necessary and designing alternatives is essential.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Aerobiose , Reatores Biológicos , Nitrogênio , Fósforo , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA