Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Chromatogr A ; 1730: 465116, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38936163

RESUMO

This work explores strategies for electrokinetic preconcentration of extracellular vesicles (EVs) that are potential source of biomarkers for different diseases. The first approach that led to successful preconcentration of EVs is based on large volume sample stacking (LVSS), allowing an enrichment factor of 7 for CE of EVs with long-end injection (using a capillary with an effective length of 50 cm). Attempts were also made to perform multiple cycles of LVSS, field amplified sample stacking (FASS) and field amplified sample injection (FASI), to improve EVs preconcentration performance. The focus was then put on development of capillary isotachophoresis under high ionic strengths (IS) for electrokinetic enrichment of slow migrating EVs having heterogeneous mobilities. This approach relies on the use of extremely high concentrations of the terminating electrolyte (TE) to slow down the mobility of TE co-ions, rendering them slower than those of EVs. The limit of detection for intact EVs using the developed ITP-UV method reached 8.3 × 108 EVs/mL, allowing an enrichment of 25 folds and a linear calibration up to 4 × 1010 EVs/mL. The ITP-UV and ITP-LIF approaches were applied to provide the electrokinetic signature of EVs of bovine milk and human plasma as well as to visualize more specifically intravesicular fluorescently labelled EVs. The investigation of these strategies shredded light into the challenges still encountered with electrokinetic preconcentration and separation of heterogeneous EVs sub-populations which are discussed herein based on our results and other attempts reported in the literature.


Assuntos
Eletroforese Capilar , Vesículas Extracelulares , Isotacoforese , Leite , Vesículas Extracelulares/química , Eletroforese Capilar/métodos , Animais , Humanos , Bovinos , Leite/química , Isotacoforese/métodos , Limite de Detecção , Camundongos , Concentração Osmolar
2.
Methods Mol Biol ; 2804: 117-125, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753144

RESUMO

Several glycoproteins are validated biomarkers of various diseases such as cancer, cardiovascular diseases, chronic alcohol abuse, or congenital disorders of glycosylation (CDG). In particular, CDG represent a group of more than 150 inherited diseases with varied symptoms affecting multiple organs. The distribution of glycans from target glycoprotein(s) can be used to extract information to help the diagnosis and possibly differentiate subtypes of CDG. Indeed, depending on the glycans and the proteins to which they are attached, glycans can play a very broad range of roles in both physical and biological properties of glycoproteins. For glycans in general, capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) has become a staple. Analysis of glycans with CE-LIF requires several sample preparation steps, including release of glycans from the target glycoprotein, fluorescent labeling of glycans, and purification of labeled glycans. Here, we describe the protocol for glycan sample treatment in a microfluidic droplet system prior to CE-LIF of labeled glycans. The microfluidic droplet approach offers full automation, sample, and reagent volume reduction and elimination of contamination from external environment.


Assuntos
Biomarcadores , Eletroforese Capilar , Polissacarídeos , Eletroforese Capilar/métodos , Biomarcadores/análise , Polissacarídeos/análise , Humanos , Glicoproteínas/análise , Glicoproteínas/metabolismo , Microfluídica/métodos , Microfluídica/instrumentação , Glicosilação
3.
Drug Deliv Transl Res ; 14(8): 2188-2202, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38578378

RESUMO

Nanoparticles (NPs) engineered as drug delivery systems continue to make breakthroughs as they offer numerous advantages over free therapeutics. However, the poor understanding of the interplay between the NPs and biomolecules, especially blood proteins, obstructs NP translation to clinics. Nano-bio interactions determine the NPs' in vivo fate, efficacy and immunotoxicity, potentially altering protein function. To fulfill the growing need to investigate nano-bio interactions, this study provides a systematic understanding of two key aspects: (i) protein corona (PC) formation and (ii) NP-induced modifications on protein's structure and stability. A methodology was developed by combining orthogonal techniques to analyze both quantitative and qualitative aspects of nano-bio interactions, using human serum albumin (HSA) as a model protein. Protein quantification via liquid chromatography-mass spectrometry, and capillary zone electrophoresis (CZE) clarified adsorbed protein quantity and stability. CZE further unveiled qualitative insights into HSA forms (native, glycated HSA and cysteinylated), while synchrotron radiation circular dichroism enabled analyzing HSA's secondary structure and thermal stability. Comparative investigations of NP cores (organic vs. hybrid), and shells (with or without polyethylene glycol (PEG)) revealed pivotal factors influencing nano-bio interactions. Polymeric NPs based on poly(lactic-co-glycolic acid) (PLGA) and hybrid NPs based on metal-organic frameworks (nanoMOFs) presented distinct HSA adsorption profiles. PLGA NPs had protein-repelling properties while inducing structural modifications on HSA. In contrast, HSA exhibited a high affinity for nanoMOFs forming a PC altering thereby the protein structure. A shielding effect was gained through PEGylation for both types of NPs, avoiding the PC formation as well as the alteration of unbound HSA structure.


Assuntos
Nanopartículas , Albumina Sérica Humana , Humanos , Nanopartículas/química , Albumina Sérica Humana/química , Coroa de Proteína/química , Estabilidade Proteica , Polímeros/química , Eletroforese Capilar , Dicroísmo Circular
4.
Anal Chim Acta ; 1291: 342090, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38280779

RESUMO

In this study, we review various strategies to couple sample processing in microfluidic droplets with different separation techniques, including liquid chromatography, mass spectrometry, and capillary electrophoresis. Separation techniques interfaced with droplet microfluidics represent an emerging trend in analytical chemistry, in which micro to femtoliter droplets serve as microreactors, a bridge between analytical modules, as well as carriers of target analytes between sample treatment and separation/detection steps. This allows to overcome the hurdles encountered in separation science, notably the low degree of module integration, working volume incompatibility, and cross contamination between different operational stages. For this droplet-separation interfacing purpose, this review covers different instrumental designs from all works on this topic up to May 2023, together with our viewpoints on respective advantages and considerations. Demonstration and performance of droplet-interfaced separation strategies for limited sample volumes are also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA