RESUMO
Children with Multisystem Inflammatory Syndrome in Children (MIS-C) can present with thrombocytopenia, which is a key feature of hemophagocytic lymphohistiocytosis (HLH). We hypothesized that thrombocytopenic MIS-C patients have more features of HLH. Clinical characteristics and routine laboratory parameters were collected from 228 MIS-C patients, of whom 85 (37%) were thrombocytopenic. Thrombocytopenic patients had increased ferritin levels; reduced leukocyte subsets; and elevated levels of ASAT and ALAT. Soluble IL-2RA was higher in thrombocytopenic children than in non-thrombocytopenic children. T-cell activation, TNF-alpha and IFN-gamma signaling markers were inversely correlated with thrombocyte levels, consistent with a more pronounced cytokine storm syndrome. Thrombocytopenia was not associated with severity of MIS-C and no pathogenic variants were identified in HLH-related genes. This suggests that thrombocytopenia in MIS-C is not a feature of a more severe disease phenotype, but the consequence of a distinct hyperinflammatory immunopathological process in a subset of children.
Assuntos
Linfo-Histiocitose Hemofagocítica , Síndrome de Resposta Inflamatória Sistêmica , Trombocitopenia , Humanos , Linfo-Histiocitose Hemofagocítica/sangue , Linfo-Histiocitose Hemofagocítica/imunologia , Linfo-Histiocitose Hemofagocítica/genética , Criança , Masculino , Pré-Escolar , Feminino , Síndrome de Resposta Inflamatória Sistêmica/sangue , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Trombocitopenia/sangue , Trombocitopenia/imunologia , Lactente , Adolescente , Fenótipo , Proteômica , COVID-19/imunologia , COVID-19/sangue , COVID-19/complicaçõesRESUMO
Aicardi-Goutières syndrome (AGS) is an autosomal recessive inflammatory syndrome that manifests as an early-onset encephalopathy with both neurologic and extraneurologic clinical findings. AGS has been associated with pathogenic variants in nine genes: TREX1, RNASEH2B, RNASEH2C, RNASEH2A, SAMHD1, ADAR, IFIH1, LSM11, and RNU7-1. Diagnosis is established by clinical findings (encephalopathy and acquired microcephaly, intellectual and physical impairments, dystonia, hepatosplenomegaly, sterile pyrexia, and/or chilblains), characteristic abnormalities on cranial CT (calcification of the basal ganglia and white matter) and MRI (leukodystrophic changes), or the identification of pathogenic/likely pathogenic variants in the known genes. One of the genes associated with AGS, SAMHD1, has also been associated with a spectrum of cerebrovascular diseases, including moyamoya disease (MMD). In this report, we describe a 31-year-old male referred to genetics for MMD since childhood who lacked the hallmark features of AGS patients but was found to have compound heterozygous SAMHD1 variants. He later developed mitral valve insufficiency due to recurrent chordal rupture and ultimately underwent a heart transplant at 37 years of age. Thus, these data suggest that SAMHD1 pathogenic variants can cause MMD without typical AGS symptoms and support that SAMHD1 should be assessed in MMD patients even in the absence of AGS features.
Assuntos
Doenças Autoimunes do Sistema Nervoso , Encefalopatias , Doença de Moyamoya , Malformações do Sistema Nervoso , Masculino , Humanos , Criança , Adulto , Proteína 1 com Domínio SAM e Domínio HD/genética , Doença de Moyamoya/complicações , Valva Mitral/patologia , Mutação , Malformações do Sistema Nervoso/diagnóstico por imagem , Malformações do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/diagnóstico , Doenças Autoimunes do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/patologia , Encefalopatias/complicaçõesRESUMO
OBJECTIVE: NR5A1 is a key regulator of sex differentiation and has been implicated in spleen development through transcription activation of TLX1. Concerns exist about hypo- or asplenism in individuals who have a difference of sex development (DSD) due to an NR5A1 disease-causing variant. We aimed to assess spleen anatomy and function in a clinical cohort of such individuals and in their asymptomatic family member carriers. DESIGN: Cross-sectional assessment in 22 patients with a DSD or primary ovarian insufficiency and 5 asymptomatic carriers from 18 families, harboring 14 different NR5A1 variants. METHODS: Spleen anatomy was assessed by ultrasound, spleen function by peripheral blood cell count, white blood cell differentiation, percentage of nonswitched memory B cells, specific pneumococcal antibody response, % pitted red blood cells, and Howell-Jolly bodies. RESULTS: Patients and asymptomatic heterozygous individuals had significantly decreased nonswitched memory B cells compared to healthy controls, but higher than asplenic patients. Thrombocytosis and spleen hypoplasia were present in 50% of heterozygous individuals. Four out of 5 individuals homozygous for the previously described p.(Arg103Gln) variant had asplenia. CONCLUSIONS: Individuals harboring a heterozygous NR5A1 variant that may cause DSD have a considerable risk for functional hyposplenism, irrespective of their gonadal phenotype. Splenic function should be assessed in these individuals, and if affected or unknown, prophylaxis is recommended to prevent invasive encapsulated bacterial infections. The splenic phenotype associated with NR5A1 variants is more severe in homozygous individuals and is, at least for the p.(Arg103Gln) variant, associated with asplenism.
Assuntos
Baço , Fator Esteroidogênico 1 , Humanos , Estudos Transversais , Heterozigoto , Mutação , Fenótipo , Baço/diagnóstico por imagem , Fator Esteroidogênico 1/genéticaRESUMO
Improvements in COVID-19 treatments, especially for the critically ill, require deeper understanding of the mechanisms driving disease pathology. The complement system is not only a crucial component of innate host defense but can also contribute to tissue injury. Although all complement pathways have been implicated in COVID-19 pathogenesis, the upstream drivers and downstream effects on tissue injury remain poorly defined. We demonstrate that complement activation is primarily mediated by the alternative pathway, and we provide a comprehensive atlas of the complement alterations around the time of respiratory deterioration. Proteomic and single-cell sequencing mapping across cell types and tissues reveals a division of labor between lung epithelial, stromal, and myeloid cells in complement production, in addition to liver-derived factors. We identify IL-6 and STAT1/3 signaling as an upstream driver of complement responses, linking complement dysregulation to approved COVID-19 therapies. Furthermore, an exploratory proteomic study indicates that inhibition of complement C5 decreases epithelial damage and markers of disease severity. Collectively, these results support complement dysregulation as a key druggable feature of COVID-19.
Assuntos
COVID-19 , Interleucina-6 , Humanos , Proteômica , Proteínas do Sistema Complemento , Ativação do ComplementoRESUMO
Dendritic cells (DCs) mature in an immunogenic or tolerogenic manner depending on the context in which an antigen is perceived, preserving the balance between immunity and tolerance. Whereas the pathways driving immunogenic maturation in response to infectious insults are well-characterized, the signals that drive tolerogenic maturation during homeostasis are still poorly understood. We found that the engulfment of apoptotic cells triggered homeostatic maturation of type 1 conventional DCs (cDC1s) within the spleen. This maturation process could be mimicked by engulfment of empty, nonadjuvanted lipid nanoparticles (LNPs), was marked by intracellular accumulation of cholesterol, and was highly specific to cDC1s. Engulfment of either apoptotic cells or cholesterol-rich LNPs led to the activation of the liver X receptor (LXR) pathway, which promotes the efflux of cellular cholesterol, and repressed genes associated with immunogenic maturation. In contrast, simultaneous engagement of TLR3 to mimic viral infection via administration of poly(I:C)-adjuvanted LNPs repressed the LXR pathway, thus delaying cellular cholesterol efflux and inducing genes that promote T cell-mediated immunity. These data demonstrate that conserved cellular cholesterol efflux pathways are differentially regulated in tolerogenic versus immunogenic cDC1s and suggest that administration of nonadjuvanted cholesterol-rich LNPs may be an approach for inducing tolerogenic DC maturation.
Assuntos
Células Dendríticas , Transdução de Sinais , Receptores X do Fígado/metabolismo , Transdução de Sinais/genética , Homeostase , ColesterolRESUMO
GM-CSF promotes myelopoiesis and inflammation, and GM-CSF blockade is being evaluated as a treatment for COVID-19-associated hyperinflammation. Alveolar GM-CSF is, however, required for monocytes to differentiate into alveolar macrophages (AMs) that control alveolar homeostasis. By mapping cross-species AM development to clinical lung samples, we discovered that COVID-19 is marked by defective GM-CSF-dependent AM instruction and accumulation of pro-inflammatory macrophages. In a multi-center, open-label RCT in 81 non-ventilated COVID-19 patients with respiratory failure, we found that inhalation of rhu-GM-CSF did not improve mean oxygenation parameters compared with standard treatment. However, more patients on GM-CSF had a clinical response, and GM-CSF inhalation induced higher numbers of virus-specific CD8 effector lymphocytes and class-switched B cells, without exacerbating systemic hyperinflammation. This translational proof-of-concept study provides a rationale for further testing of inhaled GM-CSF as a non-invasive treatment to improve alveolar gas exchange and simultaneously boost antiviral immunity in COVID-19. This study is registered at ClinicalTrials.gov (NCT04326920) and EudraCT (2020-001254-22).
Assuntos
COVID-19 , Macrófagos Alveolares , Humanos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/uso terapêutico , Pulmão , MacrófagosRESUMO
Herpes simplex virus 1 (HSV-1) infects several billion people worldwide and can cause life-threatening herpes simplex encephalitis (HSE) in some patients. Monogenic defects in components of the type I interferon system have been identified in patients with HSE, emphasizing the role of inborn errors of immunity underlying HSE pathogenesis. Here, we identify compound heterozygous loss-of-function mutations in the gene GTF3A encoding for transcription factor IIIA (TFIIIA), a component of the RNA polymerase III complex, in a patient with common variable immunodeficiency and HSE. Patient fibroblasts and GTF3A gene-edited cells displayed impaired HSV-1-induced innate immune responses and enhanced HSV-1 replication. Chromatin immunoprecipitation sequencing analysis identified the 5S ribosomal RNA pseudogene 141 (RNA5SP141), an endogenous ligand of the RNA sensor RIG-I, as a transcriptional target of TFIIIA. GTF3A mutant cells exhibited diminished RNA5SP141 expression and abrogated RIG-I activation upon HSV-1 infection. Our work unveils a crucial role for TFIIIA in transcriptional regulation of a cellular RIG-I agonist and shows that GTF3A genetic defects lead to impaired cell-intrinsic anti-HSV-1 responses and can predispose to HSE.
Assuntos
Encefalite por Herpes Simples , Herpesvirus Humano 1 , Humanos , Encefalite por Herpes Simples/genética , Encefalite por Herpes Simples/patologia , Pseudogenes , RNA , Ligantes , Fator de Transcrição TFIIIA/genética , Herpesvirus Humano 1/genética , MutaçãoRESUMO
BACKGROUND: The efficacy and safety of complement inhibition in COVID-19 patients is unclear. METHODS: A multicenter randomized controlled, open-label trial. Hospitalized COVID-19 patients with signs of systemic inflammation and hypoxemia (PaO2/FiO2 below 350 mmHg) were randomized (2:1 ratio) to receive standard of care with or without the C5 inhibitor zilucoplan daily for 14 days, under antibiotic prophylaxis. The primary outcome was improvement in oxygenation at day 6 and 15. RESULTS: 81 patients were randomly assigned to zilucoplan (n = 55) or the control group (n = 26). 78 patients were included in the safety and primary analysis. Most were men (87%) and the median age was 63 years. The mean improvement in PaO2/FiO2 from baseline to day 6 was 56.4 mmHg in the zilucoplan group and 20.6 mmHg in the control group (mean difference + 35.8; 95% confidence interval (CI) - 9.4 to 80.9; p = 0.12), an effect also observed at day 15. Day 28 mortality was 9% in the zilucoplan and 21% in the control group (odds ratio 0.4; 95% CI 0.1 to 1.5). At long-term follow up, the distance walked in a 6-min test was 539.7 m in zilucoplan and 490.6 m in the control group (p = 0.18). Zilucoplan lowered serum C5b-9 (p < 0.001) and interleukin-8 (p = 0.03) concentration compared with control. No relevant safety differences between the zilucoplan and control group were identified. CONCLUSION: Administration of zilucoplan to COVID-19 patients in this proof-of-concept randomized trial was well tolerated under antibiotic prophylaxis. While not reaching statistical significance, indicators of respiratory function (PaO2/FiO2) and clinical outcome (mortality and 6-min walk test) suggest that C5 inhibition might be beneficial, although this requires further research in larger randomized studies.
Assuntos
Anti-Infecciosos , Tratamento Farmacológico da COVID-19 , Complemento C5 , Inativadores do Complemento/efeitos adversos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Peptídeos Cíclicos , SARS-CoV-2 , Resultado do TratamentoRESUMO
BACKGROUND: Aicardi-Goutières syndrome (AGS) is a type I interferonopathy usually characterized by early-onset neurologic regression. Biallelic mutations in LSM11 and RNU7-1, components of the U7 small nuclear ribonucleoprotein (snRNP) complex, have been identified in a limited number of genetically unexplained AGS cases. Impairment of U7 snRNP function results in misprocessing of replication-dependent histone (RDH) pre-mRNA and disturbance of histone occupancy of nuclear DNA, ultimately driving cGAS-dependent type I interferon (IFN-I) release. OBJECTIVE: We performed a clinical, genetic, and immunological workup of 3 unrelated patients with uncharacterized AGS. METHODS: Whole exome sequencing (WES) and targeted Sanger sequencing of RNU7-1 were performed. Primary fibroblasts were used for mechanistic studies. IFN-I signature and STAT1/2 phosphorylation were assessed in peripheral blood. Cytokines were profiled on serum and cerebrospinal fluid (CSF). Histopathology was examined on brain and kidney tissue. RESULTS: Sequencing revealed compound heterozygous RNU7-1 mutations, resulting in impaired RDH pre-mRNA processing. The 3' stem-loop mutations reduced stability of the secondary U7 snRNA structure. A discrete IFN-I signature in peripheral blood was paralleled by MCP-1 (CCL2) and CXCL10 upregulation in CSF. Histopathological analysis of the kidney showed thrombotic microangiopathy. We observed dysregulated STAT phosphorylation upon cytokine stimulation. Clinical overview of all reported patients with RNU7-1-related disease revealed high mortality and high incidence of organ involvement compared to other AGS genotypes. CONCLUSIONS: Targeted RNU7-1 sequencing is recommended in genetically unexplained AGS cases. CSF cytokine profiling represents an additional diagnostic tool to identify aberrant IFN-I signaling. Clinical follow-up of RNU7-1-mutated patients should include screening for severe end-organ involvement including liver disease and nephropathy.
Assuntos
Doenças Autoimunes do Sistema Nervoso , Malformações do Sistema Nervoso , RNA Nuclear Pequeno/genética , Doenças Autoimunes do Sistema Nervoso/diagnóstico , Doenças Autoimunes do Sistema Nervoso/genética , Quimiocina CXCL10/genética , Histonas , Humanos , Interferons , Mutação , Malformações do Sistema Nervoso/diagnóstico , Malformações do Sistema Nervoso/genética , RNA , Precursores de RNA/química , Precursores de RNA/genética , Precursores de RNA/metabolismo , Proteínas de Ligação a RNA/genéticaRESUMO
In rare instances, pediatric SARS-CoV-2 infection results in a novel immunodysregulation syndrome termed multisystem inflammatory syndrome in children (MIS-C). We compared MIS-C immunopathology with severe COVID-19 in adults. MIS-C does not result in pneumocyte damage but is associated with vascular endotheliitis and gastrointestinal epithelial injury. In MIS-C, the cytokine release syndrome is characterized by IFNγ and not type I interferon. Persistence of patrolling monocytes differentiates MIS-C from severe COVID-19, which is dominated by HLA-DRlo classical monocytes. IFNγ levels correlate with granzyme B production in CD16+ NK cells and TIM3 expression on CD38+/HLA-DR+ T cells. Single-cell TCR profiling reveals a skewed TCRß repertoire enriched for TRBV11-2 and a superantigenic signature in TIM3+/CD38+/HLA-DR+ T cells. Using NicheNet, we confirm IFNγ as a central cytokine in the communication between TIM3+/CD38+/HLA-DR+ T cells, CD16+ NK cells, and patrolling monocytes. Normalization of IFNγ, loss of TIM3, quiescence of CD16+ NK cells, and contraction of patrolling monocytes upon clinical resolution highlight their potential role in MIS-C immunopathogenesis.
Assuntos
COVID-19/complicações , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Interferon gama/metabolismo , Células Matadoras Naturais/imunologia , Monócitos/metabolismo , Receptores de IgG/metabolismo , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Linfócitos T/imunologia , Adolescente , Células Epiteliais Alveolares/patologia , Linfócitos B/imunologia , Vasos Sanguíneos/patologia , COVID-19/imunologia , COVID-19/patologia , Proliferação de Células , Criança , Estudos de Coortes , Ativação do Complemento , Citocinas/metabolismo , Enterócitos/patologia , Feminino , Humanos , Imunidade Humoral , Inflamação/patologia , Interferon Tipo I/metabolismo , Interleucina-15/metabolismo , Ativação Linfocitária/imunologia , Masculino , Receptores de Antígenos de Linfócitos T/metabolismo , SARS-CoV-2/imunologia , Superantígenos/metabolismo , Síndrome de Resposta Inflamatória Sistêmica/patologiaRESUMO
BACKGROUND: Infections with SARS-CoV-2 continue to cause significant morbidity and mortality. Interleukin (IL)-1 and IL-6 blockade have been proposed as therapeutic strategies in COVID-19, but study outcomes have been conflicting. We sought to study whether blockade of the IL-6 or IL-1 pathway shortened the time to clinical improvement in patients with COVID-19, hypoxic respiratory failure, and signs of systemic cytokine release syndrome. METHODS: We did a prospective, multicentre, open-label, randomised, controlled trial, in hospitalised patients with COVID-19, hypoxia, and signs of a cytokine release syndrome across 16 hospitals in Belgium. Eligible patients had a proven diagnosis of COVID-19 with symptoms between 6 and 16 days, a ratio of the partial pressure of oxygen to the fraction of inspired oxygen (PaO2:FiO2) of less than 350 mm Hg on room air or less than 280 mm Hg on supplemental oxygen, and signs of a cytokine release syndrome in their serum (either a single ferritin measurement of more than 2000 µg/L and immediately requiring high flow oxygen or mechanical ventilation, or a ferritin concentration of more than 1000 µg/L, which had been increasing over the previous 24 h, or lymphopenia below 800/mL with two of the following criteria: an increasing ferritin concentration of more than 700 µg/L, an increasing lactate dehydrogenase concentration of more than 300 international units per L, an increasing C-reactive protein concentration of more than 70 mg/L, or an increasing D-dimers concentration of more than 1000 ng/mL). The COV-AID trial has a 2â×â2 factorial design to evaluate IL-1 blockade versus no IL-1 blockade and IL-6 blockade versus no IL-6 blockade. Patients were randomly assigned by means of permuted block randomisation with varying block size and stratification by centre. In a first randomisation, patients were assigned to receive subcutaneous anakinra once daily (100 mg) for 28 days or until discharge, or to receive no IL-1 blockade (1:2). In a second randomisation step, patients were allocated to receive a single dose of siltuximab (11 mg/kg) intravenously, or a single dose of tocilizumab (8 mg/kg) intravenously, or to receive no IL-6 blockade (1:1:1). The primary outcome was the time to clinical improvement, defined as time from randomisation to an increase of at least two points on a 6-category ordinal scale or to discharge from hospital alive. The primary and supportive efficacy endpoints were assessed in the intention-to-treat population. Safety was assessed in the safety population. This study is registered online with ClinicalTrials.gov (NCT04330638) and EudraCT (2020-001500-41) and is complete. FINDINGS: Between April 4, and Dec 6, 2020, 342 patients were randomly assigned to IL-1 blockade (n=112) or no IL-1 blockade (n=230) and simultaneously randomly assigned to IL-6 blockade (n=227; 114 for tocilizumab and 113 for siltuximab) or no IL-6 blockade (n=115). Most patients were male (265 [77%] of 342), median age was 65 years (IQR 54-73), and median Systematic Organ Failure Assessment (SOFA) score at randomisation was 3 (2-4). All 342 patients were included in the primary intention-to-treat analysis. The estimated median time to clinical improvement was 12 days (95% CI 10-16) in the IL-1 blockade group versus 12 days (10-15) in the no IL-1 blockade group (hazard ratio [HR] 0·94 [95% CI 0·73-1·21]). For the IL-6 blockade group, the estimated median time to clinical improvement was 11 days (95% CI 10-16) versus 12 days (11-16) in the no IL-6 blockade group (HR 1·00 [0·78-1·29]). 55 patients died during the study, but no evidence for differences in mortality between treatment groups was found. The incidence of serious adverse events and serious infections was similar across study groups. INTERPRETATION: Drugs targeting IL-1 or IL-6 did not shorten the time to clinical improvement in this sample of patients with COVID-19, hypoxic respiratory failure, low SOFA score, and low baseline mortality risk. FUNDING: Belgian Health Care Knowledge Center and VIB Grand Challenges program.
Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Síndrome da Liberação de Citocina , Insuficiência Respiratória , Idoso , Bélgica , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/virologia , Feminino , Ferritinas , Humanos , Hipóxia , Interleucina-1/antagonistas & inibidores , Interleucina-6/antagonistas & inibidores , Masculino , Pessoa de Meia-Idade , Oxigênio , Estudos Prospectivos , Insuficiência Respiratória/tratamento farmacológico , Insuficiência Respiratória/virologia , SARS-CoV-2 , Resultado do TratamentoRESUMO
Although CD8+ T cell tolerance to tissue-specific antigen (TSA) is essential for host homeostasis, the mechanisms underlying peripheral cross-tolerance and whether they may differ between tissue sites remain to be fully elucidated. Here, we demonstrate that peripheral cross-tolerance to intestinal epithelial cell (IEC)-derived antigen involves the generation and suppressive function of FoxP3+CD8+ T cells. FoxP3+CD8+ Treg generation was dependent on intestinal cDC1, whose absence led to a break of tolerance and epithelial destruction. Mechanistically, intestinal cDC1-derived PD-L1, TGFß, and retinoic acid contributed to the generation of gut-tropic CCR9+CD103+FoxP3+CD8+ Tregs Last, CD103-deficient CD8+ T cells lacked tolerogenic activity in vivo, indicating a role for CD103 in FoxP3+CD8+ Treg function. Our results describe a role for FoxP3+CD8+ Tregs in cross-tolerance in the intestine for which development requires intestinal cDC1.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Tolerância Periférica , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Transferência Adotiva , Animais , Apresentação de Antígeno , Autoantígenos/imunologia , Autoantígenos/metabolismo , Autoimunidade , Linfócitos T CD8-Positivos/metabolismo , Células Cultivadas , Técnicas de Cocultura , Células Dendríticas/metabolismo , Feminino , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Jejuno/citologia , Jejuno/imunologia , Camundongos , Modelos Animais , Cultura Primária de Células , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Reguladores/metabolismo , Quimeras de TransplanteRESUMO
(1) Background: Blockade of the PD-1/PD-L1 pathway has revolutionized the oncology field in the last decade. However, the proportion of patients experiencing a durable response is still limited. In the current study, we performed an extensive immune monitoring in patients with stage III/IV melanoma and stage IV UC who received anti-PD-1 immunotherapy with SBRT. (2) Methods: In total 145 blood samples from 38 patients, collected at fixed time points before and during treatment, were phenotyped via high-parameter flow cytometry, luminex assay and UPLC-MS/MS. (3) Results: Baseline systemic immunity in melanoma and UC patients was different with a more prominent myeloid compartment and a higher neutrophil to lymphocyte ratio in UC. Proliferation (Ki67+) of CD8+ T-cells and of the PD-1+/PD-L1+ CD8+ subset at baseline correlated with progression free survival in melanoma. In contrast a higher frequency of PD-1/PD-L1 expressing non-proliferating (Ki67-) CD8+ and CD4+ T-cells before treatment was associated with worse outcome in melanoma. In UC, the expansion of Ki67+ CD8+ T-cells and of the PD-L1+ subset relative to tumor burden correlated with clinical outcome. (4) Conclusion: This study reveals a clearly different immune landscape in melanoma and UC at baseline, which may impact immunotherapy response. Signatures of proliferation in the CD8+ T-cell compartment prior to and early after anti-PD-1 initiation were positively correlated with clinical outcome in both cohorts. PD-1/PD-L1 expression on circulating immune cell subsets seems of clinical relevance in the melanoma cohort.
RESUMO
Pathogenic biallelic variants in the BLM/RECQL3 gene cause a rare autosomal recessive disorder called Bloom syndrome (BS). This syndrome is characterized by severe growth delay, immunodeficiency, dermatological manifestations and a predisposition to a wide variety of cancers, often multiple and very early in life. Literature shows that the main mode of BLM inactivation is protein translation termination. We expanded the molecular spectrum of BS by reporting the first deep intronic variant causing intron exonisation. We describe a patient with a clinical phenotype of BS and a strong increase in sister chromatid exchanges (SCE), who was found to be compound heterozygous for a novel nonsense variant c.3379C>T, p.(Gln1127Ter) in exon 18 and a deep intronic variant c.3020-258A>G in intron 15 of the BLM gene. The deep intronic variant creates a high-quality de novo donor splice site, which leads to retention of two intron segments. Both pseudo-exons introduce a premature stop codon into the reading frame and abolish BLM protein expression, confirmed by Western Blot analysis. These findings illustrate the role of non-coding variation in Mendelian disorders and herewith highlight an unmet need in routine testing of Mendelian disorders, being the added value of RNA-based approaches to provide a complete molecular diagnosis.
Assuntos
Síndrome de Bloom/genética , Códon sem Sentido , Íntrons/genética , RecQ Helicases/genética , Éxons/genética , Heterozigoto , Humanos , Padrões de Herança , Masculino , Linhagem , Fenótipo , Adulto JovemRESUMO
Autosomal dominant hyper-IgE syndrome (AD-HIES) is typically caused by dominant-negative (DN) STAT3 mutations. Patients suffer from cold staphylococcal lesions and mucocutaneous candidiasis, severe allergy, and skeletal abnormalities. We report 12 patients from 8 unrelated kindreds with AD-HIES due to DN IL6ST mutations. We identified seven different truncating mutations, one of which was recurrent. The mutant alleles encode GP130 receptors bearing the transmembrane domain but lacking both the recycling motif and all four STAT3-recruiting tyrosine residues. Upon overexpression, the mutant proteins accumulate at the cell surface and are loss of function and DN for cellular responses to IL-6, IL-11, LIF, and OSM. Moreover, the patients' heterozygous leukocytes and fibroblasts respond poorly to IL-6 and IL-11. Consistently, patients with STAT3 and IL6ST mutations display infectious and allergic manifestations of IL-6R deficiency, and some of the skeletal abnormalities of IL-11R deficiency. DN STAT3 and IL6ST mutations thus appear to underlie clinical phenocopies through impairment of the IL-6 and IL-11 response pathways.
Assuntos
Receptor gp130 de Citocina/genética , Genes Dominantes , Síndrome de Job/genética , Mutação/genética , Adolescente , Alelos , Proteína C-Reativa/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Criança , Receptor gp130 de Citocina/deficiência , Citocinas/biossíntese , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Genética Populacional , Células HEK293 , Humanos , Síndrome de Job/sangue , Síndrome de Job/diagnóstico por imagem , Síndrome de Job/imunologia , Cinética , Mutação com Perda de Função/genética , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Linhagem , Fenótipo , Células Th2/metabolismo , Regulação para Cima , Adulto JovemRESUMO
GATA2 deficiency, first described in 2011, is a bone marrow failure disorder resulting in a complex haematological and immunodeficiency syndrome characterised by cytopenias, severe infections, myelodysplasia and leukaemia. The only curative treatment is allogeneic haematopoietic stem cell transplantation (HSCT). Although knowledge on this syndrome has greatly expanded, in clinical practice many challenges remain. In particular, guidelines on optimal donor and stem cell source and conditioning regimens regarding HSCT are lacking. Additionally, genetic analysis of GATA2 is technically cumbersome and could easily result in false-negative results. With this report, we wish to raise awareness of these pitfalls amongst physicians dealing with haematological malignancies and primary immunodeficiencies.
Assuntos
Deficiência de GATA2/terapia , Transplante de Células-Tronco Hematopoéticas , Adulto , Aloenxertos , Feminino , Deficiência de GATA2/diagnóstico por imagem , Neoplasias Hematológicas/diagnóstico por imagem , Neoplasias Hematológicas/terapia , Humanos , Síndromes de Imunodeficiência/diagnóstico por imagem , Síndromes de Imunodeficiência/terapia , MasculinoRESUMO
Common variable immunodeficiency (CVID) is one of the most frequently diagnosed primary antibody deficiencies (PADs), a group of disorders characterized by a decrease in one or more immunoglobulin (sub)classes and/or impaired antibody responses caused by inborn defects in B cells in the absence of other major immune defects. CVID patients suffer from recurrent infections and disease-related, non-infectious, complications such as autoimmune manifestations, lymphoproliferation, and malignancies. A timely diagnosis is essential for optimal follow-up and treatment. However, CVID is by definition a diagnosis of exclusion, thereby covering a heterogeneous patient population and making it difficult to establish a definite diagnosis. To aid the diagnosis of CVID patients, and distinguish them from other PADs, we developed an automated machine learning pipeline which performs automated diagnosis based on flow cytometric immunophenotyping. Using this pipeline, we analyzed the immunophenotypic profile in a pediatric and adult cohort of 28 patients with CVID, 23 patients with idiopathic primary hypogammaglobulinemia, 21 patients with IgG subclass deficiency, six patients with isolated IgA deficiency, one patient with isolated IgM deficiency, and 100 unrelated healthy controls. Flow cytometry analysis is traditionally done by manual identification of the cell populations of interest. Yet, this approach has severe limitations including subjectivity of the manual gating and bias toward known populations. To overcome these limitations, we here propose an automated computational flow cytometry pipeline that successfully distinguishes CVID phenotypes from other PADs and healthy controls. Compared to the traditional, manual analysis, our pipeline is fully automated, performing automated quality control and data pre-processing, automated population identification (gating) and deriving features from these populations to build a machine learning classifier to distinguish CVID from other PADs and healthy controls. This results in a more reproducible flow cytometry analysis, and improves the diagnosis compared to manual analysis: our pipelines achieve on average a balanced accuracy score of 0.93 (±0.07), whereas using the manually extracted populations, an averaged balanced accuracy score of 0.72 (±0.23) is achieved.
Assuntos
Imunodeficiência de Variável Comum/diagnóstico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Linfócitos B/imunologia , Estudos de Casos e Controles , Criança , Pré-Escolar , Imunodeficiência de Variável Comum/imunologia , Feminino , Citometria de Fluxo/métodos , Humanos , Imunoglobulinas/imunologia , Imunofenotipagem/métodos , Masculino , Pessoa de Meia-Idade , Fenótipo , Adulto JovemRESUMO
Juvenile-onset recurrent respiratory papillomatosis (JRRP) is a rare and debilitating childhood disease that presents with recurrent growth of papillomas in the upper airway. Two common human papillomaviruses (HPVs), HPV-6 and -11, are implicated in most cases, but it is still not understood why only a small proportion of children develop JRRP following exposure to these common viruses. We report 2 siblings with a syndromic form of JRRP associated with mild dermatologic abnormalities. Whole-exome sequencing of the patients revealed a private homozygous mutation in NLRP1, encoding Nucleotide-Binding Domain Leucine-Rich Repeat Family Pyrin Domain-Containing 1. We find the NLRP1 mutant allele to be gain of function (GOF) for inflammasome activation, as demonstrated by the induction of inflammasome complex oligomerization and IL-1ß secretion in an overexpression system. Moreover, patient-derived keratinocytes secrete elevated levels of IL-1ß at baseline. Finally, both patients displayed elevated levels of inflammasome-induced cytokines in the serum. Six NLRP1 GOF mutations have previously been described to underlie 3 allelic Mendelian diseases with differing phenotypes and modes of inheritance. Our results demonstrate that an autosomal recessive, syndromic form of JRRP can be associated with an NLRP1 GOF mutation.