Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Signal Transduct Target Ther ; 9(1): 146, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38880808

RESUMO

Sporadic venous malformations are genetic conditions primarily caused by somatic gain-of-function mutation of PIK3CA or TEK, an endothelial transmembrane receptor signaling through PIK3CA. Venous malformations are associated with pain, bleedings, thrombosis, pulmonary embolism, esthetic deformities and, in severe cases, life-threatening situations. No authorized medical treatment exists for patients with venous malformations. Here, we created a genetic mouse model of PIK3CA-related capillary venous malformations that replicates patient phenotypes. We showed that these malformations only partially signal through AKT proteins. We compared the efficacy of different drugs, including rapamycin, a mTORC1 inhibitor, miransertib, an AKT inhibitor and alpelisib, a PI3Kα inhibitor at improving the lesions seen in the mouse model. We demonstrated the effectiveness of alpelisib in preventing vascular malformations' occurrence, improving the already established ones, and prolonging survival. Considering these findings, we were authorized to treat 25 patients with alpelisib, including 7 children displaying PIK3CA (n = 16) or TEK (n = 9)-related capillary venous malformations resistant to usual therapies including sirolimus, debulking surgical procedures or percutaneous sclerotherapies. We assessed the volume of vascular malformations using magnetic resonance imaging (MRI) for each patient. Alpelisib demonstrated improvement in all 25 patients. Vascular malformations previously considered intractable were reduced and clinical symptoms were attenuated. MRI showed a decrease of 33.4% and 27.8% in the median volume of PIK3CA and TEK malformations respectively, over 6 months on alpelisib. In conclusion, this study supports PI3Kα inhibition as a promising therapeutic strategy in patients with PIK3CA or TEK-related capillary venous malformations.


Assuntos
Capilares , Classe I de Fosfatidilinositol 3-Quinases , Malformações Vasculares , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Animais , Camundongos , Humanos , Malformações Vasculares/genética , Malformações Vasculares/tratamento farmacológico , Malformações Vasculares/patologia , Capilares/efeitos dos fármacos , Capilares/patologia , Feminino , Masculino , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Criança , Modelos Animais de Doenças , Terapia de Alvo Molecular , Tiazóis
4.
J Exp Med ; 220(11)2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37712948

RESUMO

Hemifacial myohyperplasia (HFMH) is a rare cause of facial asymmetry exclusively involving facial muscles. The underlying cause and the mechanism of disease progression are unknown. Here, we identified a somatic gain-of-function mutation of PIK3CA in five pediatric patients with HFMH. To understand the physiopathology of muscle hypertrophy in this context, we created a mouse model carrying specifically a PIK3CA mutation in skeletal muscles. PIK3CA gain-of-function mutation led to striated muscle cell hypertrophy, mitochondria dysfunction, and hypoglycemia with low circulating insulin levels. Alpelisib treatment, an approved PIK3CA inhibitor, was able to prevent and reduce muscle hypertrophy in the mouse model with correction of endocrine anomalies. Based on these findings, we treated the five HFMH patients. All patients demonstrated clinical, esthetical, and radiological improvement with proof of target engagement. In conclusion, we show that HFMH is due to somatic alteration of PIK3CA and is accessible to pharmacological intervention.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases , Assimetria Facial , Mutação com Ganho de Função , Animais , Camundongos , Classe I de Fosfatidilinositol 3-Quinases/genética , Modelos Animais de Doenças , Hipertrofia , Humanos , Criança
5.
IEEE Trans Ultrason Ferroelectr Freq Control ; 70(12): 1671-1681, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37603493

RESUMO

Multispectral optoacoustic tomography (MSOT) uniquely enables spatial mapping in high resolution of oxygen saturation (SO2), with potential applications in studying pathological complications and therapy efficacy. MSOT offers seamless integration with ultrasonography, by using a common ultrasound (US) detector array. However, MSOT relies on multiple successive acquisitions of optoacoustic (OA) images at different optical wavelengths and the low frame rate of OA imaging makes the MSOT acquisition sensitive to body/respiratory motion. Moreover, the estimation of SO2 is highly sensitive to noise, and artifacts related to the respiratory motion of the animal were identified as the primary source of noise in MSOT. In this work, we propose a two-step image processing method for SO2 estimation in deep tissues. First, to mitigate motion artifacts, we propose a method of selection of OA images acquired only during the respiratory pause of the animal, using ultrafast ultrasound (US) images acquired immediately after each OA acquisition (US image acquisition duration of 1.4 ms and a total delay of 7 ms). We show that gating is more effective using US images than OA images at different optical wavelengths. Second, we propose a novel method that can estimate directly the SO2 value of a pixel and at the same time evaluate the amount of noise present in that pixel. Hence, the method can efficiently eliminate the pixels dominated by noise from the final SO2 map. Our postprocessing method is shown to outperform conventional methods for SO2 estimation, and the method was validated by in vivo oxygen challenge experiments.


Assuntos
Saturação de Oxigênio , Técnicas Fotoacústicas , Animais , Técnicas Fotoacústicas/métodos , Tomografia/métodos , Tomografia Computadorizada por Raios X , Processamento de Imagem Assistida por Computador/métodos
7.
Nat Commun ; 14(1): 3835, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37380648

RESUMO

Takotsubo cardiomyopathy is a stress-induced cardiovascular disease with symptoms comparable to those of an acute coronary syndrome but without coronary obstruction. Takotsubo was initially considered spontaneously reversible, but epidemiological studies revealed significant long-term morbidity and mortality, the reason for which is unknown. Here, we show in a female rodent model that a single pharmacological challenge creates a stress-induced cardiomyopathy similar to Takotsubo. The acute response involves changes in blood and tissue biomarkers and in cardiac in vivo imaging acquired with ultrasound, magnetic resonance and positron emission tomography. Longitudinal follow up using in vivo imaging, histochemistry, protein and proteomics analyses evidences a continued metabolic reprogramming of the heart towards metabolic malfunction, eventually leading to irreversible damage in cardiac function and structure. The results combat the supposed reversibility of Takotsubo, point to dysregulation of glucose metabolic pathways as a main cause of long-term cardiac disease and support early therapeutic management of Takotsubo.


Assuntos
Modelos Animais de Doenças , Coração , Estresse Psicológico , Cardiomiopatia de Takotsubo , Humanos , Feminino , Animais , Ratos , Cardiomiopatia de Takotsubo/metabolismo , Cardiomiopatia de Takotsubo/patologia , Ratos Wistar , Coração/fisiopatologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Glucose-6-Fosfato/metabolismo , Glicólise , Estresse Psicológico/complicações
8.
Cell Mol Life Sci ; 80(7): 179, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37314567

RESUMO

Glioblastoma (GBM) is the most common and fatal primary tumor of the central nervous system (CNS) and current treatments have limited success. Chemokine signaling regulates both malignant cells and stromal cells of the tumor microenvironment (TME), constituting a potential therapeutic target against brain cancers. Here, we investigated the C-C chemokine receptor type 7 (CCR7) and the chemokine (C-C-motif) ligand 21 (CCL21) for their expression and function in human GBM and then assessed their therapeutic potential in preclinical mouse GBM models. In GBM patients, CCR7 expression positively associated with a poor survival. CCL21-CCR7 signaling was shown to regulate tumor cell migration and proliferation while also controlling tumor associated microglia/macrophage recruitment and VEGF-A production, thereby controlling vascular dysmorphia. Inhibition of CCL21-CCR7 signaling led to an increased sensitivity to temozolomide-induced tumor cell death. Collectively, our data indicate that drug targeting of CCL21-CCR7 signaling in tumor and TME cells is a therapeutic option against GBM.


Assuntos
Glioblastoma , Microglia , Animais , Camundongos , Humanos , Glioblastoma/tratamento farmacológico , Receptores CCR7/genética , Macrófagos , Sistema Nervoso Central , Microambiente Tumoral , Quimiocina CCL21
9.
Cancers (Basel) ; 15(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36980637

RESUMO

The standard assessment of response to cancer treatments is based on gross tumor characteristics, such as tumor size or glycolysis, which provide very indirect information about the effect of precision treatments on the pharmacological targets of tumors. Several advanced imaging modalities allow for the visualization of targeted tumor hallmarks. Descriptors extracted from these images can help establishing new classifications of precision treatment response. We propose a machine learning (ML) framework to analyze metabolic-anatomical-vascular imaging features from positron emission tomography, ultrafast Doppler, and computed tomography in a mouse model of paraganglioma undergoing anti-angiogenic treatment with sunitinib. Imaging features from the follow-up of sunitinib-treated (n = 8, imaged once-per-week/6-weeks) and sham-treated (n = 8, imaged once-per-week/3-weeks) mice groups were dimensionally reduced and analyzed with hierarchical clustering Analysis (HCA). The classes extracted from HCA were used with 10 ML classifiers to find a generalized tumor stage prediction model, which was validated with an independent dataset of sunitinib-treated mice. HCA provided three stages of treatment response that were validated using the best-performing ML classifier. The Gaussian naive Bayes classifier showed the best performance, with a training accuracy of 98.7 and an average area under curve of 100. Our results show that metabolic-anatomical-vascular markers allow defining treatment response trajectories that reflect the efficacy of an anti-angiogenic drug on the tumor target hallmark.

10.
Sci Adv ; 8(49): eade7823, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36490341

RESUMO

PIK3CA-related overgrowth syndrome (PROS) is a genetic disorder caused by somatic mosaic gain-of-function mutations of PIK3CA. Clinical presentation of patients is diverse and associated with endocrine disruption. Adipose tissue is frequently involved, but its role in disease development and progression has not been elucidated. Here, we created a mouse model of PIK3CA-related adipose tissue overgrowth that recapitulates patient phenotype. We demonstrate that PIK3CA mutation leads to GLUT4 membrane accumulation with a negative feedback loop on insulin secretion, a burst of liver IGFBP1 synthesis with IGF-1 sequestration, and low circulating levels. Mouse phenotype was mainly driven through AKT2. We also observed that PIK3CA mutation induces metabolic reprogramming with Warburg-like effect and protein and lipid synthesis, hallmarks of cancer cells, in vitro, in vivo, and in patients. We lastly show that alpelisib is efficient at preventing and improving PIK3CA-adipose tissue overgrowth and reversing metabolomic anomalies in both animal models and patients.


Assuntos
Tecido Adiposo , Classe I de Fosfatidilinositol 3-Quinases , Mutação com Ganho de Função , Animais , Camundongos , Tecido Adiposo/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Mutação com Ganho de Função/genética , Mutação , Fenótipo
11.
Endocr Relat Cancer ; 29(6): 375-388, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35348472

RESUMO

Therapies for metastatic SDHB-dependent pheochromocytoma and paraganglioma (PPGL) are limited and poorly efficient. New targeted therapies and identification of early non-invasive biomarkers of response are thus urgently needed for these patients. We characterized an in vivo allograft model of spontaneously immortalized murine chromaffin cells (imCC) with inactivation of the Sdhb gene by dynamic contrast-enhanced MRI (DCE-MRI) and 18FDG-PET. We evaluated the response to several therapies: IACS-010759 (mitochondrial respiratory chain complex I inhibitor), sunitinib (tyrosine kinase inhibitor with anti-angiogenic activity), talazoparib (poly ADP ribose polymerase (PARP) inhibitor) combined or not to temozolomide (alkylating agent), pharmacological inhibitors of HIF2a (PT2385 and PT2977 (belzutifan)) and molecular inactivation of HIF2a (imCC Sdhb-/- shHIF2a). Multimodal imaging was performed, including magnetic resonance spectroscopy (1H-MRS) to monitor the level of succinate in vivo. The allografted model of Sdhb-/- imCC reflected SDHB-deficient tumors, with increased angiogenesis and a particular avidity for 18FDG. After 14 days of treatment, IACS-010759, sunitinib and talazoparib at high doses allowed a significant reduction of the tumor volumes. In contrast to the tumor growth inhibition observed in Sdhb-/- shHIF2a imCC tumors, pharmacological inhibitors of HIF2a (PT2385 and belzutifan) showed no antitumor action in this model, alone or in combination with sunitinib. 1H-MRS, but not DCE-MRI, enabled the monitoring response to sunitinib, which was the best treatment in this study, promoting a decrease in succinate levels detected in vivo. This study paves the way for new therapeutic options and reveals a potential new early biomarker of response to treatment in SDHB-dependent PPGL.


Assuntos
Neoplasias das Glândulas Suprarrenais , Antineoplásicos , Paraganglioma , Feocromocitoma , Neoplasias das Glândulas Suprarrenais/genética , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Fluordesoxiglucose F18/uso terapêutico , Humanos , Camundongos , Mutação , Paraganglioma/tratamento farmacológico , Paraganglioma/genética , Paraganglioma/patologia , Feocromocitoma/genética , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo , Succinatos/uso terapêutico , Sunitinibe/uso terapêutico
12.
J Biomed Inform ; 127: 104007, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35124236

RESUMO

Biomedical research data reuse and sharing is essential for fostering research progress. To this aim, data producers need to master data management and reporting through standard and rich metadata, as encouraged by open data initiatives such as the FAIR (Findable, Accessible, Interoperable, Reusable) guidelines. This helps data re-users to understand and reuse the shared data with confidence. Therefore, dedicated frameworks are required. The provenance reporting throughout a biomedical study lifecycle has been proposed as a way to increase confidence in data while reusing it. The Biomedical Study - Lifecycle Management (BMS-LM) data model has implemented provenance and lifecycle traceability for several multimodal-imaging techniques but this is not enough for data understanding while reusing it. Actually, in the large scope of biomedical research, a multitude of metadata sources, also called Knowledge Organization Systems (KOSs), are available for data annotation. In addition, data producers uses local terminologies or KOSs, containing vernacular terms for data reporting. The result is a set of heterogeneous KOSs (local and published) with different formats and levels of granularity. To manage the inherent heterogeneity, semantic interoperability is encouraged by the Research Data Management (RDM) community. Ontologies, and more specifically top ontologies such as BFO and DOLCE, make explicit the metadata semantics and enhance semantic interoperability. Based on the BMS-LM data model and the BFO top ontology, the BioMedical Study - Lifecycle Management (BMS-LM) core ontology is proposed together with an associated framework for semantic interoperability between heterogeneous KOSs. It is made of four ontological levels: top/core/domain/local and aims to build bridges between local and published KOSs. In this paper, the conversion of the BMS-LM data model to a core ontology is detailed. The implementation of its semantic interoperability in a specific domain context is explained and illustrated with examples from small animal preclinical research.


Assuntos
Ontologias Biológicas , Pesquisa Biomédica , Animais , Curadoria de Dados , Metadados , Projetos de Pesquisa , Semântica
13.
Am J Pathol ; 192(5): 783-793, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35183511

RESUMO

Pathologic fibrosis is a major hallmark of tissue insult in many chronic diseases. Although the amount of fibrosis is recognized as a direct indicator of the extent of disease, there is no consentaneous method for its quantification in tissue sections. This study tested FIBER-ML, a semi-automated, open-source freeware that uses a machine-learning approach to quantify fibrosis automatically after a short user-controlled learning phase. Fibrosis was quantified in sirius red-stained tissue sections from two fibrogenic animal models: acute stress-induced cardiomyopathy in rats (Takotsubo syndrome-like) and HIV-induced nephropathy in mice (chronic kidney disease). The quantitative results of FIBER-ML software version 1.0 were compared with those of ImageJ in Takotsubo syndrome, and with those of inForm in chronic kidney disease. Intra- and inter-operator and inter-software correlation and agreement were assessed. All correlations were excellent (>0.95) in both data sets. The values of discriminatory power between the pathologic and healthy groups were <10-3 for data on Takotsubo syndrome and <10-4 for data on chronic kidney disease. Intra-operator agreement, assessed by intra-class coefficient correlation, was good (>0.8), while inter-operator and inter-software agreement ranged from moderate to good (>0.7). FIBER-ML performed in a fast and user-friendly manner, with reproducible and consistent quantification of fibrosis in tissue sections. It offers an open-source alternative to currently used software, including quality control and file management.


Assuntos
Insuficiência Renal Crônica , Cardiomiopatia de Takotsubo , Animais , Feminino , Fibrose , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Camundongos , Ratos , Software , Aprendizado de Máquina Supervisionado
15.
PLoS One ; 16(9): e0256769, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34473740

RESUMO

OBJECTIVES: To evaluate the feasibility of dynamic contrast enhanced magnetic resonance imaging (DCE MRI) and measure values of in vivo placental perfusion in women. METHODS: This study was part of the Placentimage trial (NCT01092949). Gadolinium-chelate (Gd) enhanced dynamic MRI was performed two days before termination of pregnancies at 16 to 34 weeks gestational age (GA). Quantitative analysis was performed using one-compartment intravascular modeling. DCE perfusion parameters were analyzed across GA and were compared in IUGR and AGA fetuses. RESULTS: 134 patients were enrolled. After quality control check, 62 DCE MRI were analyzed including 48 and 14 pregnancies with normal and abnormal karyotypes, respectively. Mean placental blood flow was 129±61 mL/min/100ml in cases with normal karyotypes. Fetuses affected by IUGR (n = 13) showed significantly lower total placental blood flow values than AGA fetuses (n = 35) (F total = 122±88 mL/min versus 259±34 mL/min, p = 0.002). DCE perfusion parameters showed a linear correlation with GA. CONCLUSIONS: Measuring placental perfusion in vivo is possible using DCE MRI. Although this study has many limitations it gives us the first DCE MRI values that provide a potential standard for future research into placental perfusion methods and suggests that placental functional parameters are altered in IUGR pregnancies.


Assuntos
Peso ao Nascer , Meios de Contraste/administração & dosagem , Retardo do Crescimento Fetal/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Placenta/diagnóstico por imagem , Circulação Placentária , Quelantes/química , Estudos de Viabilidade , Feminino , Retardo do Crescimento Fetal/genética , Gadolínio/química , Idade Gestacional , Humanos , Cariótipo , Gravidez
16.
J Clin Invest ; 131(16)2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34181595

RESUMO

SLIT2 is a secreted polypeptide that guides migration of cells expressing Roundabout 1 and 2 (ROBO1 and ROBO2) receptors. Herein, we investigated SLIT2/ROBO signaling effects in gliomas. In patients with glioblastoma (GBM), SLIT2 expression increased with malignant progression and correlated with poor survival and immunosuppression. Knockdown of SLIT2 in mouse glioma cells and patient-derived GBM xenografts reduced tumor growth and rendered tumors sensitive to immunotherapy. Tumor cell SLIT2 knockdown inhibited macrophage invasion and promoted a cytotoxic gene expression profile, which improved tumor vessel function and enhanced efficacy of chemotherapy and immunotherapy. Mechanistically, SLIT2 promoted microglia/macrophage chemotaxis and tumor-supportive polarization via ROBO1- and ROBO2-mediated PI3K-γ activation. Macrophage Robo1 and Robo2 deletion and systemic SLIT2 trap delivery mimicked SLIT2 knockdown effects on tumor growth and the tumor microenvironment (TME), revealing SLIT2 signaling through macrophage ROBOs as a potentially novel regulator of the GBM microenvironment and immunotherapeutic target for brain tumors.


Assuntos
Neoplasias Encefálicas/imunologia , Glioblastoma/imunologia , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Proteínas do Tecido Nervoso/imunologia , Receptores Imunológicos/imunologia , Animais , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/patologia , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Glioblastoma/irrigação sanguínea , Glioblastoma/patologia , Xenoenxertos , Humanos , Tolerância Imunológica , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Peptídeos e Proteínas de Sinalização Intercelular/genética , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/imunologia , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Prognóstico , Transdução de Sinais/imunologia , Microambiente Tumoral/imunologia , Proteínas Roundabout
17.
Theranostics ; 11(8): 3830-3838, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33664864

RESUMO

Anti-angiogenics drugs in clinical use for cancer treatment induce cardiotoxic side effects. The endothelin axis is involved in hypertension and cardiac remodelling, and addition of an endothelin receptor antagonist to the anti-angiogenic sunitinib was shown to reduce cardiotoxicity of sunitinib in mice. Here, we explored further the antidote effect of the endothelin receptor antagonist macitentan in sunitinib-treated animals on cardiac remodeling. Methods: Tumor-bearing mice treated per os daily by sunitinib or vehicle were imaged before and after 1, 3 and 6 weeks of treatment by positron emission tomography using [18F]fluorodeoxyglucose and by echocardiography. Non-tumor-bearing animals were randomly assigned to be treated per os daily by vehicle or sunitinib or macitentan or sunitinib+macitentan, and imaged by echocardiography after 5 weeks. Hearts were harvested for histology and molecular analysis at the end of in vivo exploration. Results: Sunitinib treatment increases left ventricular mass and ejection fraction and induces cardiac fibrosis. Sunitinib also induces an early increase in cardiac uptake of [18F]fluorodeoxyglucose, which is significantly correlated with increased left ventricular mass at the end of treatment. Co-administration of macitentan prevents sunitinib-induced hypertension, increase in ejection fraction and cardiac fibrosis, but fails to prevent increase of the left ventricular mass. Conclusion: Early metabolic changes predict sunitinib-induced cardiac remodeling. Endothelin blockade can prevent some but not all cardiotoxic side-effects of sunitinib, in particular left ventricle hypertrophy that appears to be induced by sunitinib through an endothelin-independent mechanism.


Assuntos
Cardiomegalia/induzido quimicamente , Endotelinas/fisiologia , Sunitinibe/toxicidade , Animais , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Modelos Animais de Doenças , Antagonistas dos Receptores de Endotelina/administração & dosagem , Feminino , Fibrose , Glicólise/efeitos dos fármacos , Hipertensão/induzido quimicamente , Hipertensão/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Medicina de Precisão , Pirimidinas/administração & dosagem , Sulfonamidas/administração & dosagem , Remodelação Ventricular/efeitos dos fármacos , Remodelação Ventricular/fisiologia
18.
Circ Res ; 128(3): 363-382, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33301355

RESUMO

RATIONALE: Cerebrovascular function is critical for brain health, and endogenous vascular protective pathways may provide therapeutic targets for neurological disorders. S1P (Sphingosine 1-phosphate) signaling coordinates vascular functions in other organs, and S1P1 (S1P receptor-1) modulators including fingolimod show promise for the treatment of ischemic and hemorrhagic stroke. However, S1P1 also coordinates lymphocyte trafficking, and lymphocytes are currently viewed as the principal therapeutic target for S1P1 modulation in stroke. OBJECTIVE: To address roles and mechanisms of engagement of endothelial cell S1P1 in the naive and ischemic brain and its potential as a target for cerebrovascular therapy. METHODS AND RESULTS: Using spatial modulation of S1P provision and signaling, we demonstrate a critical vascular protective role for endothelial S1P1 in the mouse brain. With an S1P1 signaling reporter, we reveal that abluminal polarization shields S1P1 from circulating endogenous and synthetic ligands after maturation of the blood-neural barrier, restricting homeostatic signaling to a subset of arteriolar endothelial cells. S1P1 signaling sustains hallmark endothelial functions in the naive brain and expands during ischemia by engagement of cell-autonomous S1P provision. Disrupting this pathway by endothelial cell-selective deficiency in S1P production, export, or the S1P1 receptor substantially exacerbates brain injury in permanent and transient models of ischemic stroke. By contrast, profound lymphopenia induced by loss of lymphocyte S1P1 provides modest protection only in the context of reperfusion. In the ischemic brain, endothelial cell S1P1 supports blood-brain barrier function, microvascular patency, and the rerouting of blood to hypoperfused brain tissue through collateral anastomoses. Boosting these functions by supplemental pharmacological engagement of the endothelial receptor pool with a blood-brain barrier penetrating S1P1-selective agonist can further reduce cortical infarct expansion in a therapeutically relevant time frame and independent of reperfusion. CONCLUSIONS: This study provides genetic evidence to support a pivotal role for the endothelium in maintaining perfusion and microvascular patency in the ischemic penumbra that is coordinated by S1P signaling and can be harnessed for neuroprotection with blood-brain barrier-penetrating S1P1 agonists.


Assuntos
Barreira Hematoencefálica/metabolismo , Artérias Cerebrais/metabolismo , Células Endoteliais/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Ataque Isquêmico Transitório/metabolismo , AVC Isquêmico/metabolismo , Lisofosfolipídeos/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Esfingosina/análogos & derivados , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/fisiopatologia , Artérias Cerebrais/efeitos dos fármacos , Artérias Cerebrais/patologia , Artérias Cerebrais/fisiopatologia , Circulação Cerebrovascular , Modelos Animais de Doenças , Células Endoteliais/patologia , Feminino , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Infarto da Artéria Cerebral Média/prevenção & controle , Ataque Isquêmico Transitório/patologia , Ataque Isquêmico Transitório/fisiopatologia , Ataque Isquêmico Transitório/prevenção & controle , AVC Isquêmico/patologia , AVC Isquêmico/fisiopatologia , AVC Isquêmico/prevenção & controle , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microcirculação , Fármacos Neuroprotetores/farmacologia , Transdução de Sinais , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/agonistas , Receptores de Esfingosina-1-Fosfato/genética , Grau de Desobstrução Vascular
19.
Eur Radiol ; 31(5): 3090-3097, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33123792

RESUMO

OBJECTIVE: Assessment of lung development and maturity is of utmost importance in prenatal counseling. Blood oxygen level-dependent (BOLD) effect MRI was developed for functional evaluations of organs. To date, no data are available in fetal lungs and nothing is known about the existence of a BOLD effect in the lungs. The aim of our study was to evaluate if a BOLD response could be detected in fetal lungs. MATERIALS AND METHODS: From January 2014 to December 2016, 38 healthy pregnant women were prospectively enrolled. After a routine scan on a 1.5-T MRI device (normoxic period), maternal hyperoxia was induced for 5 min before the BOLD sequence (hyperoxic period). R2* was evaluated by fitting average intensity of the signal, both for normoxic (norm) and hyperoxic (hyper) periods. RESULTS: A significant BOLD response was observed after maternal hyperoxia in the lungs with a mean R2* decrease of 12.1 ± 2.5% (p < 0.001), in line with the placenta response with a mean R2* decrease of 19.2 ± 5.9% (p < 0.0001), confirming appropriate oxygen uptake. Conversely, no significant BOLD effect was observed for the brain nor the liver with a mean ∆R2* of 3.6 ± 3.1% (p = 0.64) and 2.8 ± 3.7% (p = 0.23). CONCLUSION: This study shows for the first time in human that a BOLD response can be observed in the normal fetal lung despite its prenatal "non-functional status." If confirmed in congenital lung and chest malformations, this property could be used in addition to the lung volume for a better prediction of postnatal respiratory status. KEY POINTS: • Blood oxygen level-dependent (BOLD) effect MRI was developed for functional evaluations of organs and could have interesting implications for the fetal organs. • Assessment of lung development is of utmost importance in prenatal counseling, but to date no data are available in fetal lungs. • BOLD response can be observed in the normal fetal lung opening the way to studies on fetus with pathological lungs.


Assuntos
Hiperóxia , Oxigênio , Feminino , Feto/diagnóstico por imagem , Humanos , Hiperóxia/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA