Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Infect Drug Resist ; 15: 1077-1091, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35321080

RESUMO

Background: Escherichia coli (E. coli), the main human gut microorganism, is one of the evolved superbugs because of acquiring antimicrobial resistance (AMR) determinants via horizontal gene transfer (HGT). Purpose: This study aimed to screen isolates of gut commensal E. coli from healthy adult individuals for antimicrobial susceptibility and plasmid-mediated AMR encoding genes. Methods: Gut commensal E. coli bacteria were isolated from fecal samples that were taken from healthy adult individuals and investigated phenotypically for their antimicrobial susceptibility against diverse classes of antimicrobials using the Kirby Bauer disc method. PCR-based molecular assays were carried out to detect diverse plasmid-carried AMR encoding genes and virulence genes of different E. coli pathotypes (eaeA, stx, ipaH, est, elt, aggR and pCVD432). The examined AMR genes were ß-lactam resistance encoding genes (bla CTX-M1, bla TEM, bla CMY-2), tetracycline resistance encoding genes (tetA, tetB), sulfonamides resistance encoding genes (sul1, sulII), aminoglycoside resistance encoding genes (aac(3)-II, aac(6')-Ib-cr) and quinolones resistance encoding genes (qnrA, qnrB, qnrS). Results: PCR results revealed the absence of pathotypes genes in 56 isolates that were considered gut commensal isolates. E. coli isolates showed high resistance rates against tested antimicrobial agents belonging to both ß-lactams and sulfonamides (42/56, 75%) followed by quinolones (35/56, 62.5%), tetracyclines (31/56, 55.4%), while the lowest resistance rate was to aminoglycosides (24/56, 42.9%). Antimicrobial susceptibility profiles revealed that 64.3% of isolates were multidrug-resistant (MDR). High prevalence frequencies of plasmid-carried AMR genes were detected including bla TEM (64%) sulI (60.7%), qnrA (51.8%), aac(3)-II (37.5%), and tetA (46.4%). All isolates harbored more than one gene with the most frequent genetic profile among isolates was bla TEM-bla CTX-M1-like-qnrA-qnrB-tetA-sulI. Conclusion: Results are significant in the evaluation of plasmid-carried AMR genes in the human gut commensal E. coli, suggesting a potential human health risk and the necessity of strict regulation of the use of antibiotics in Egypt. Commensal E. coli bacteria may constitute a potential reservoir of AMR genes that can be transferred to other bacterial species.

2.
Antibiotics (Basel) ; 9(12)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260700

RESUMO

This study aimed at the characterization of carbapenem-resistant Klebsiella pneumoniae isolates focusing on typing of the blaOXA-48-like genes. Additionally, the correlation between the resistance pattern and biofilm formation capacity of the carbapenem-resistant K. pneumoniae isolates was studied. The collected isolates were assessed for their antimicrobial resistance and carbapenemases production by a modified Hodge test and inhibitor-based tests. The carbapenemases encoding genes (blaKPC, blaNDM, blaVIM, blaIMP, and blaOXA-48-like) were detected by PCR. Isolates harboring blaOXA-48-like genes were genotyped by Enterobacterial Repetitive Intergenic Consensus-Polymerase Chain Reaction (ERIC-PCR) and plasmid profile analysis. The discriminatory power of the three typing methods (antibiogram, ERIC-PCR, and plasmid profile analysis) was compared by calculation of Simpson's Diversity Index (SDI). The transferability of blaOXA-48 gene was tested by chemical transformation. The biofilm formation capacity and the prevalence of the genes encoding the fimbrial adhesins (fimH-1 and mrkD) were investigated. The isolates showed remarkable resistance to ß-lactams and non-ß-lactams antimicrobials. The coexistence of the investigated carbapenemases encoding genes was prevalent except for only 15 isolates. The plasmid profile analysis had the highest discriminatory power (SDI = 0.98) in comparison with ERIC-PCR (SDI = 0.89) and antibiogram (SDI = 0.78). The transferability of blaOXA-48 gene was unsuccessful. All isolates were biofilm formers with the absence of a significant correlation between the biofilm formation capacity and resistance profile. The genes fimH-1 and mrkD were prevalent among the isolates. The prevalence of carbapenemases encoding genes, especially blaOXA-48-like genes in Egyptian healthcare settings, is worrisome and necessitates further strict dissemination control measures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA