Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Nat Electron ; 7(2): 168-179, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38433871

RESUMO

Approaches to quantify stress responses typically rely on subjective surveys and questionnaires. Wearable sensors can potentially be used to continuously monitor stress-relevant biomarkers. However, the biological stress response is spread across the nervous, endocrine, and immune systems, and the capabilities of current sensors are not sufficient for condition-specific stress response evaluation. Here we report an electronic skin for stress response assessment that non-invasively monitors three vital signs (pulse waveform, galvanic skin response and skin temperature) and six molecular biomarkers in human sweat (glucose, lactate, uric acid, sodium ions, potassium ions and ammonium). We develop a general approach to prepare electrochemical sensors that relies on analogous composite materials for stabilizing and conserving sensor interfaces. The resulting sensors offer long-term sweat biomarker analysis of over 100 hours with high stability. We show that the electronic skin can provide continuous multimodal physicochemical monitoring over a 24-hour period and during different daily activities. With the help of a machine learning pipeline, we also show that the platform can differentiate three stressors with an accuracy of 98.0%, and quantify psychological stress responses with a confidence level of 98.7%.

2.
Nanoscale ; 16(9): 4542-4562, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38299713

RESUMO

With the increasing demand for wearable and miniature electronics, in-plane zinc (Zn) ion hybrid micro-supercapacitors (ZIHMSCs), as a promising and compatible energy power source, have attracted tremendous attention due to their unique merits. Despite enormous development and breakthroughs in this field, there is still a lack of a systematic and comprehensive review to update the recent progress of in-plane ZIHMSCs in the design and fabrication of both micro-anodes and micro-cathodes, the exploration and optimization of new electrolytes, and the investigation of related-energy storage mechanisms. This minireview summarizes the key breakthroughs and recent advances in the construction of high-performance in-plane ZIHMSCs. First, the background and fundamentals of in-plane ZIHMSCs are briefly introduced. Then, new concepts, strategies, and latest exciting developments in the preparation and interfacial engineering of Zn metal micro-anodes, the fabrication of advanced micro-cathodes, and the exploration of new electrolyte systems are discussed, respectively. Finally, the key challenges and future directions for the development of high-performance in-plane ZIHMSCs are presented as well. This review not only accounts for the recent research progress in the field of the in-plane ZIHMSCs, but also provides important new insights into the design of next-generation miniaturized energy storage devices.

3.
Nat Nanotechnol ; 19(3): 330-337, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37770648

RESUMO

Personalized monitoring of female hormones (for example, oestradiol) is of great interest in fertility and women's health. However, existing approaches usually require invasive blood draws and/or bulky analytical laboratory equipment, making them hard to implement at home. Here we report a skin-interfaced wearable aptamer nanobiosensor based on target-induced strand displacement for automatic and non-invasive monitoring of oestradiol via in situ sweat analysis. The reagentless, amplification-free and 'signal-on' detection approach coupled with a gold nanoparticle-MXene-based detection electrode offers extraordinary sensitivity with an ultra-low limit of detection of 0.14 pM. This fully integrated system is capable of autonomous sweat induction at rest via iontophoresis, precise microfluidic sweat sampling controlled via capillary bursting valves, real-time oestradiol analysis and calibration with simultaneously collected multivariate information (that is, temperature, pH and ionic strength), as well as signal processing and wireless communication with a user interface (for example, smartphone). We validated the technology in human participants. Our data indicate a cyclical fluctuation in sweat oestradiol during menstrual cycles, and a high correlation between sweat and blood oestradiol was identified. Our study opens up the potential for wearable sensors for non-invasive, personalized reproductive hormone monitoring.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Dispositivos Eletrônicos Vestíveis , Humanos , Feminino , Ouro , Pele , Estradiol
4.
Sci Adv ; 9(37): eadi6492, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37703361

RESUMO

The amalgamation of wearable technologies with physiochemical sensing capabilities promises to create powerful interpretive and predictive platforms for real-time health surveillance. However, the construction of such multimodal devices is difficult to be implemented wholly by traditional manufacturing techniques for at-home personalized applications. Here, we present a universal semisolid extrusion-based three-dimensional printing technology to fabricate an epifluidic elastic electronic skin (e3-skin) with high-performance multimodal physiochemical sensing capabilities. We demonstrate that the e3-skin can serve as a sustainable surveillance platform to capture the real-time physiological state of individuals during regular daily activities. We also show that by coupling the information collected from the e3-skin with machine learning, we were able to predict an individual's degree of behavior impairments (i.e., reaction time and inhibitory control) after alcohol consumption. The e3-skin paves the path for future autonomous manufacturing of customizable wearable systems that will enable widespread utility for regular health monitoring and clinical applications.


Assuntos
Consumo de Bebidas Alcoólicas , Dispositivos Eletrônicos Vestíveis , Humanos , Comércio , Aprendizado de Máquina , Impressão Tridimensional
5.
Mater Today (Kidlington) ; 71: 135-151, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38222250

RESUMO

The development of wearable and implantable bioelectronics has garnered significant momentum in recent years, driven by the ever-increasing demand for personalized health monitoring, remote patient management, and real-time physiological data collection. The elevated sophistication and advancement of these devices have thus led to the use of many new and unconventional materials which cannot be fulfilled through traditional manufacturing techniques. Three-dimension (3D) printing, also known as additive manufacturing, is an emerging technology that opens new opportunities to fabricate next-generation bioelectronic devices. Some significant advantages include its capacity for material versatility and design freedom, rapid prototyping, and manufacturing efficiency with enhanced capabilities. This review provides an overview of the recent advances in 3D printing of bioelectronics, particularly direct ink writing (DIW), encompassing the methodologies, materials, and applications that have emerged in this rapidly evolving field. This review showcases the broad range of bioelectronic devices fabricated through 3D printing including wearable biophysical sensors, biochemical sensors, electrophysiological sensors, energy devices, multimodal systems, implantable devices, and soft robots. This review will also discuss the advantages, existing challenges, and outlook of applying DIW 3D printing for the development of bioelectronic devices toward healthcare applications.

6.
Nanomaterials (Basel) ; 12(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36364652

RESUMO

Stability of advanced functional materials subjected to extreme conditions involving ion bombardment, radiation, or reactive chemicals is crucial for diverse applications. Here we demonstrate the excellent stability of wafer-scale thin films of vertically aligned hexagonal BN nanosheets (hBNNS) exposed to high-energy ions and reactive atomic oxygen representative of extreme conditions in space exploration and other applications. The hBNNS are fabricated catalyst-free on wafer-scale silicon, stainless steel, copper and glass panels at a lower temperature of 400 °C by inductively coupled plasma (ICP) assisted chemical vapor deposition (CVD) and subsequently characterized. The resistance of BNNS to high-energy ions was tested by immersing the samples into the plasma plume at the anode of a 150 W Hall Effect Thruster with BNNS films facing Xenon ions, revealing that the etching rate of BNNS is 20 times less than for a single-crystalline silicon wafer. Additionally, using O2/Ar/H2 plasmas to simulate the low Earth orbit (LEO) environment, it is demonstrated that the simulated plasma had very weak influence on the hBNNS surface structure and thickness. These results validate the strong potential of BNNS films for applications as protective, thermally conductive and insulating layers for spacecrafts, electric plasma satellite thrusters and semiconductor optoelectronic devices.

7.
Sci Adv ; 6(10): eaay4958, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32181347

RESUMO

Hexagonal boron nitride (hBN) is an insulating two-dimensional (2D) material with a large bandgap. Although known for its interfacing with other 2D materials and structural similarities to graphene, the potential use of hBN in 2D electronics is limited by its insulating nature. Here, we report atomically sharp twin boundaries at AA'/AB stacking boundaries in chemical vapor deposition-synthesized few-layer hBN. We find that the twin boundary is composed of a 6'6' configuration, showing conducting feature with a zero bandgap. Furthermore, the formation mechanism of the atomically sharp twin boundaries is suggested by an analogy with stacking combinations of AA'/AB based on the observations of extended Klein edges at the layer boundaries of AB-stacked hBN. The atomically sharp AA'/AB stacking boundary is promising as an ultimate 1D electron channel embedded in insulating pristine hBN. This study will provide insights into the fabrication of single-hBN electronic devices.

8.
Adv Mater ; 31(37): e1806603, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31353629

RESUMO

Phonon polaritons in van der Waals materials reveal significant confinement accompanied with long propagation length: important virtues for tasks pertaining to the control of light and energy flow at the nanoscale. While previous studies of phonon polaritons have relied on relatively thick samples, here reported is the first observation of surface phonon polaritons in single atomic layers and bilayers of hexagonal boron nitride (hBN). Using antenna-based near-field microscopy, propagating surface phonon polaritons in mono- and bilayer hBN microcrystals are imaged. Phonon polaritons in monolayer hBN are confined in a volume about one million times smaller than the free-space photons. Both the polariton dispersion and their wavelength-thickness scaling law are altered compared to those of hBN bulk counterparts. These changes are attributed to phonon hardening in monolayer-thick crystals. The data reported here have bearing on applications of polaritons in metasurfaces and ultrathin optical elements.

9.
Nano Lett ; 19(7): 4229-4236, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-30844285

RESUMO

Among the different growth mechanisms for two-dimensional (2D) hexagonal boron nitride (h-BN) synthesized using chemical vapor deposition, spiraling growth of h-BN has not been reported. Here we report the formation of intertwined double-spiral few-layer h-BN that is driven by screw dislocations located at the antiphase boundaries of monolayer domains. The microstructure and stacking configurations were studied using a combination of dark-field and atomic resolution transmission electron microscopy. Distinct from other 2D materials with single-spiral structures, the double-spiral structure enables the intertwined h-BN layers to preserve the most stable AA' stacking configuration. We also found that the occurrence of shear strains at the boundaries of merged spiral islands is dependent on the propagation directions of encountering screw dislocations and presented the strained features by density functional theory calculations and atomic image simulations. This study unveils the double-spiral growth of 2D h-BN multilayers and the creation of a shear strain band at the coalescence boundary of two h-BN spiral clusters.

10.
ACS Appl Mater Interfaces ; 10(48): 41707-41716, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30403340

RESUMO

Three-dimensional (3D) graphene architectures with well-controlled structure and excellent physiochemical properties have attracted considerable interest due to their potential applications in flexible electronic devices. However, the majority of the existing 3D graphene still encounters several drawbacks such as brittleness, non-uniform building units, and limited scale (millimeter or even micrometer), which severely limits its practical applications. Herein, we demonstrate a new scalable technique for the preparation of thin-layer graphite foam (GF) with controllable densities (27.2-69.2 mg cm-3) by carbonization of polyacrylonitrile using a template-directed thermal annealing approach. By integrating the GF with poly(dimethylsiloxane) (PDMS), macroscopic porous GF@PDMS with variable thin-layer GF contents ranging from 15.9 to 31.7% was further fabricated. Owing to the robust interconnected porous network of the GF and the synergistic effect between GF and PDMS, GF@PDMS with a 15.9% thin-layer GF content exhibited an impressive 254% increase in compressive strength over the bare GF. In addition, such 15.9% GF@PDMS can totally recover after the first compression cycle at a 95% strain and maintain ∼88% recovery even after 1000 compression cycles at an 80% strain, demonstrating its superior compressibility. Moreover, all of the as-prepared GF@PDMS samples possessed high electrical conductivity (up to 34.3 S m-1), relatively low thermal conductivity (0.062-0.076 W m-1 K-1), and excellent electromagnetic interference shielding effectiveness (up to 36.1 dB) over a broad frequency range of 8.2-18 GHz, indicating their great potential as promising candidates for high-performance electromagnetic wave absorption in flexible electronic devices.

11.
Nanoscale ; 10(34): 16243-16251, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30124699

RESUMO

Hexagonal boron nitride (h-BN) is an ideal substrate for two-dimensional (2D) materials because of its unique electrically insulating nature, atomic smoothness and low density of dangling bonds. Although mechanical exfoliation from bulk crystals produces the most pristine flakes, scalable fabrication of devices is still dependent on other more direct synthetic routes. To date, the most utilized method to synthesize large-area h-BN films is by chemical vapor deposition (CVD) using catalytic metal substrates. However, a major drawback for such synthetic films is the manifestation of thermally-induced wrinkles, which severely disrupt the smoothness of the h-BN films. Here, we provide a detailed characterization study of the microstructure of h-BN wrinkles and demonstrate an effective post-synthesis smoothening route by thermal annealing in air. The smoothened h-BN film showed an improved surface smoothness by up to 66% and resulted in a much cleaner surface due to the elimination of polymer residues with no substantial oxidative damage to the film. The unwrinkling effect is attributed to the hydroxylation of the h-BN film as well as the substrate surface, resulting in a reduction in adhesion energy at the interface. Dehydroxylation occurs over time under ambient conditions at room temperature and the smoothened film can be restored back with the intrinsic properties of h-BN. This work provides an efficient route to achieve smoother h-BN films, which are beneficial for high-performance 2D heterostructure devices.

12.
ACS Appl Mater Interfaces ; 10(11): 9688-9695, 2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-29489328

RESUMO

Vertically aligned carbon nanotube (CNT) arrays have been recognized as promising cushion materials because of their superior thermal stability, remarkable compressibility, and viscoelastic characteristics. However, most of the previously reported CNT arrays still suffer from permanent shape deformation at only moderate compressive strains, which considerably restricts their practical applications. Here, we demonstrate a facile strategy of fabricating supercompressible coaxial CNT@graphene (CNT@Gr) arrays by using a two-step route involving encapsulating polymer layers onto plastic CNT arrays and subsequent annealing processes. Notably, the resulting CNT@Gr arrays are able to almost completely recover from compression at a strain of up to 80% and retain ∼80% recovery even after 1000 compression cycles at a 60% strain, demonstrating their excellent compressibility. Furthermore, they possess outstanding strain- and frequency-dependent viscoelastic responses, with storage modulus and damping ratio of up to ∼6.5 MPa and ∼0.19, respectively, which are nearly constant over an exceptionally broad temperature range of -100 to 500 °C in ambient air. These supercompressibility and temperature-invariant viscoelasticity together with facile fabrication process of the CNT@Gr arrays enable their promising multifunctional applications such as energy absorbers, mechanical sensors, and heat exchangers, even in extreme environments.

13.
ACS Nano ; 12(2): 1262-1272, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29378394

RESUMO

Although two-dimensional boron (B) has attracted much attention in electronics and optoelectronics due to its unique physical and chemical properties, in-depth investigations and applications have been limited by the current synthesis techniques. Herein, we demonstrate that high-quality few-layer B sheets can be prepared in large quantities by sonication-assisted liquid-phase exfoliation. By simply varying the exfoliating solvent types and centrifugation speeds, the lateral size and thickness of the exfoliated B sheets can be controllably tuned. Additionally, the exfoliated few-layer B sheets exhibit excellent stability and outstanding dispersion in organic solvents without aggregates for more than 50 days under ambient conditions, owing to the presence of a solvent residue shell on the B sheet surface that provides excellent protection against air oxidation. Moreover, we also demonstrate the use of the exfoliated few-layer B sheets for high-performance supercapacitor electrode materials. This as-prepared device exhibits impressive electrochemical performance with a wide potential window of up to 3.0 V, excellent energy density as high as 46.1 Wh/kg at a power density of 478.5 W/kg, and excellent cycling stability with 88.7% retention of the initial specific capacitance after 6000 cycles. This current work not only demonstrates an effective strategy for the synthesis of the few-layer B sheets in a controlled manner but also makes the resulting materials promising for next-generation optoelectronics and energy storage applications.

14.
ACS Appl Mater Interfaces ; 9(17): 14555-14560, 2017 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-28429587

RESUMO

We demonstrate the thermal conductivity enhancement of the vertically aligned carbon nanotube (CNT) arrays (from ∼15.5 to 29.5 W/mK, ∼90% increase) by encapsulating outer boron nitride nanotube (BNNT, 0.97 nm-thick with ∼3-4 walls). The heat transfer enhancement mechanism of the coaxial C@BNNT was further revealed by molecular dynamics simulations. Because of their highly coherent lattice structures, the outer BNNT serves as additional heat conducting path without impairing the thermal conductance of inner CNT. This work provides deep insights into tailoring the heat transfer of arbitrary CNT arrays and will enable their broader applications as thermal interface material.

15.
ACS Nano ; 11(4): 3742-3751, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28345866

RESUMO

Poly(vinyl alcohol) (PVA) hydrogels with tissue-like viscoelasticity, excellent biocompatibility, and high hydrophilicity have been considered as promising cartilage replacement materials. However, lack of sufficient mechanical properties is a critical barrier to their use as load-bearing cartilage substitutes. Herein, we report hydroxylated boron nitride nanosheets (OH-BNNS)/PVA interpenetrating hydrogels by cyclically freezing/thawing the aqueous mixture of PVA and highly hydrophilic OH-BNNS (up to 0.6 mg/mL, two times the highest reported so far). Encouragingly, the resulting OH-BNNS/PVA hydrogels exhibit controllable reinforcements in both mechanical and thermal responses by simply varying the OH-BNNS contents. Impressive 45, 43, and 63% increases in compressive, tensile strengths and Young's modulus, respectively, can be obtained even with only 0.12 wt% (OH-BNNS:PVA) OH-BNNS addition. Meanwhile, exciting improvements in the thermal diffusivity (15%) and conductivity (5%) can also be successfully achieved. These enhancements are attributed to the synergistic effect of intrinsic superior properties of the as-prepared OH-BNNS and strong hydrogen bonding interactions between the OH-BNNS and PVA chains. In addition, excellent cytocompatibility of the composite hydrogels was verified by cell proliferation and live/dead viability assays. These biocompatible OH-BNNS/PVA hydrogels are promising in addressing the mechanical failure and locally overheating issues as cartilage substitutes and may also have broad utility for biomedical applications, such as drug delivery, tissue engineering, biosensors, and actuators.

16.
ACS Nano ; 11(2): 1712-1718, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28112907

RESUMO

Electronics with multifunctionalities such as transparency, portability, and flexibility are anticipated for future circuitry development. Flexible memory is one of the indispensable elements in a hybrid electronic integrated circuit as the information storage device. Herein, we demonstrate a transparent, flexible, and transferable hexagonal boron nitride (hBN)-based resistive switching memory with indium tin oxide (ITO) and graphene electrodes on soft polydimethylsiloxane (PDMS) substrate. The ITO/hBN/graphene/PDMS memory device not only exhibits excellent performance in terms of optical transmittance (∼85% in the visible wavelength), ON/OFF ratio (∼480), retention time (∼5 × 104 s) but also shows robust flexibility under bending conditions and stable operation on arbitrary substrates. More importantly, direct observation of indium filaments in an ITO/hBN/graphene device is found via ex situ transmission electron microscopy, which provides critical insight on the complex resistive switching mechanisms.

17.
Nanoscale ; 8(21): 11114-22, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-27227818

RESUMO

Vertically aligned carbon nanotube (CNT) arrays have aroused considerable interest because of their remarkable mechanical properties. However, the mechanical behaviour of as-synthesized CNT arrays could vary drastically at a macro-scale depending on their morphologies, dimensions and array density, which are determined by the synthesis method. Here, we demonstrate a coaxial carbon@boron nitride nanotube (C@BNNT) array with enhanced compressive strength and shape recoverability. CNT arrays are grown using a commercially available thermal chemical vapor deposition (TCVD) technique and an outer BNNT with a wall thickness up to 1.37 nm is introduced by a post-growth TCVD treatment. Importantly, compared to the as-grown CNT arrays which deform almost plastically upon compression, the coaxial C@BNNT arrays exhibit an impressive ∼4-fold increase in compressive strength with nearly full recovery after the first compression cycle at a 50% strain (76% recovery maintained after 10 cycles), as well as a significantly high and persistent energy dissipation ratio (∼60% at a 50% strain after 100 cycles), attributed to the synergistic effect between the CNT and outer BNNT. Additionally, the as-prepared C@BNNT arrays show an improved structural stability in air at elevated temperatures, attributing to the outstanding thermal stability of the outer BNNT. This work provides new insights into tailoring the mechanical and thermal behaviours of arbitrary CNT arrays which enables a broader range of applications.

18.
Nanoscale ; 8(4): 2434-44, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26753762

RESUMO

Atomically smooth hexagonal boron nitride (h-BN) films are considered as a nearly ideal dielectric interface for two-dimensional (2D) heterostructure devices. Reported mono- to few-layer 2D h-BN films, however, are mostly small grain-sized, polycrystalline and randomly oriented. Here we report the growth of centimetre-sized atomically thin h-BN films composed of aligned domains on resolidified Cu. The films consist of monolayer single crystalline triangular and hexagonal domains with size of up to ∼10 µm. The domains converge to symmetrical multifaceted shapes such as "butterfly" and "6-apex-star" and exhibit ∼75% grain alignment for over millimetre distances as verified through transmission electron microscopy. Scanning electron microscopy images reveal that these domains are aligned for over centimetre distances. Defect lines are generated along the grain boundaries of mirroring h-BN domains due to the two different polarities (BN and NB) and edges with the same termination. The observed triangular domains with truncated edges and alternatively hexagonal domains are in accordance with Wulff shapes that have minimum edge energy. This work provides an extensive study on the aligned growth of h-BN single crystals over large distances and highlights the obstacles that are needed to be overcome for a 2D material with a binary configuration.

19.
Small ; 11(48): 6491-9, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26574683

RESUMO

Boron nitride quantum dots (BNQDs), as a new member of heavy metal-free quantum dots, have aroused great interest in fundamental research and practical application due to their unique physical/chemical properties. However, it is still a challenge to controllably synthesize high-quality BNQDs with high quantum yield (QY), uniform size and strong fluorescent. In this work, BNQDs have been successfully fabricated by the liquid exfoliation and the subsequent solvothermal process with respect to its facileness and easy large scale up. Importantly, BNQDs with high-quality can be controllably obtained by adjusting the synthetic parameters involved in the solvothermal process including filling factor, synthesis temperature, and duration time. Encouragingly, the as-prepared BNQDs possess strong blue luminescence with QY as high as 19.5%, which can be attributed to the synergetic effect of size, surface chemistry and edge defects. In addition, this strategy presented here provides a new reference for the controllable synthesis of other heavy metal-free QDs. Furthermore, the as-prepared BNQDs are non-toxic to cells and exhibit nanosecond-scaled lifetimes, suggesting they have great potential biological and optoelectronic applications.


Assuntos
Compostos de Boro/química , Luminescência , Nanotecnologia/métodos , Pontos Quânticos/química , Microscopia de Força Atômica , Tamanho da Partícula , Espectroscopia Fotoeletrônica , Pontos Quânticos/ultraestrutura , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman
20.
Nanoscale ; 7(35): 14730-7, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26284783

RESUMO

Here we report a wafer-scale graphene/P(VDF-TrFE)/graphene multilayer for light-weight, flexible and fast-switched broadband modulation applications. The P(VDF-TrFE) film not only significantly reduces the sheet resistance of graphene throughout heavy doping of ∼0.8 × 10(13) cm(-2) by nonvolatile ferroelectric dipoles, but also acts as an efficient electro-optic (EO) layer. Such multilayered structural integration with remarkable ferroelectric polarization, high transparency (>90%), low sheet resistance (∼302 Ω□(-1)), and excellent mechanic flexibility shows the potential of a flexible modulation application over a broad range of wavelengths. Moreover, the derived device also exhibits strong field-induced EO modulation even under bending and one large Pockels coefficient (∼54.3 pm V(-1)) is obtained. Finally, the graphene and ferroelectric hybrid demonstrates a fast switching time (∼2 µs) and works well below low sheet resistance level over a long time. This work gives insights into the potential of graphene and ferroelectric hybrid structures, enabling future exploration on next-generation high-performance, flexible transparent electronics and photonics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA