Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Aging Cell ; 23(5): e14107, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38343281

RESUMO

Mitochondria are essential for survival and as such, impairments in organelle homeostasis significantly accelerate age-related morbidity and mortality. Here, we determined the contribution of bioenergetic efficiency to life span and health span in Drosophila melanogaster utilizing the mitochondrial uncoupler BAM15. Life span was determined in flies fed a normal diet (ND) or high fat diet (HFD) supplemented with vehicle or BAM15. Locomotor function was determined by negative geotaxis assay in middle-aged flies fed vehicle or BAM15 under ND or HFD conditions. Redox capacity (high-resolution respirometry/fluorometry), citrate synthase (enzyme activity), mtDNA content (qPCR), gene expression (qPCR), and protein expression (western blot) were assessed in flight muscle homogenates of middle-aged flies fed vehicle or BAM15 ND. The molar ratio of H2O2 and O2 (H2O2:O2) in a defined respiratory state was calculated as a measure of redox balance. BAM15 extended life span by 9% on ND and 25% on HFD and improved locomotor activity by 125% on ND and 53% on HFD. Additionally, BAM15 enhanced oxidative phosphorylation capacity supported by pyruvate + malate, proline, and glycerol 3-phosphate. Concurrently, BAM15 enhanced the mitochondrial H2O2 production rate, reverse electron flow from mitochondrial glycerol-3-phosphate dehydrogenase (mGPDH) to Complex I, mGPDH, and Complex I without altering the H2O2:O2 ratio. BAM15 upregulated transcriptional signatures associated with mitochondrial function and fitness as well as antioxidant defense. BAM15-mediated restriction of bioenergetic efficiency prolongs life span and health span in Drosophila fed a ND or HFD. Improvements in life span and health span in ND were supported by synergistic enhancement of muscular redox capacity.


Assuntos
Drosophila melanogaster , Metabolismo Energético , Longevidade , Mitocôndrias , Oxirredução , Animais , Drosophila melanogaster/metabolismo , Longevidade/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA