Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
2.
Nat Genet ; 56(4): 595-604, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38548990

RESUMO

Common genetic variants confer substantial risk for chronic lung diseases, including pulmonary fibrosis. Defining the genetic control of gene expression in a cell-type-specific and context-dependent manner is critical for understanding the mechanisms through which genetic variation influences complex traits and disease pathobiology. To this end, we performed single-cell RNA sequencing of lung tissue from 66 individuals with pulmonary fibrosis and 48 unaffected donors. Using a pseudobulk approach, we mapped expression quantitative trait loci (eQTLs) across 38 cell types, observing both shared and cell-type-specific regulatory effects. Furthermore, we identified disease interaction eQTLs and demonstrated that this class of associations is more likely to be cell-type-specific and linked to cellular dysregulation in pulmonary fibrosis. Finally, we connected lung disease risk variants to their regulatory targets in disease-relevant cell types. These results indicate that cellular context determines the impact of genetic variation on gene expression and implicates context-specific eQTLs as key regulators of lung homeostasis and disease.


Assuntos
Fibrose Pulmonar , Locos de Características Quantitativas , Humanos , Locos de Características Quantitativas/genética , Fibrose Pulmonar/genética , Regulação da Expressão Gênica/genética , Pulmão , Herança Multifatorial , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único
3.
JCI Insight ; 8(19)2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37676731

RESUMO

A hallmark of idiopathic pulmonary fibrosis (IPF) and other interstitial lung diseases is dysregulated repair of the alveolar epithelium. The Hippo pathway effector transcription factors YAP and TAZ are implicated as essential for type 1 and type 2 alveolar epithelial cell (AT1 and AT2) differentiation in the developing lung, yet aberrant activation of YAP/TAZ is a prominent feature of the dysregulated alveolar epithelium in IPF. In these studies, we sought to define the functional role of YAP/TAZ activity during alveolar regeneration. We demonstrated that Yap and Taz were normally activated in AT2 cells shortly after injury, and deletion of Yap/Taz in AT2 cells led to pathologic alveolar remodeling, failure of AT2-to-AT1 cell differentiation, increased collagen deposition, exaggerated neutrophilic inflammation, and increased mortality following injury induced by a single dose of bleomycin. Loss of Yap/Taz activity prior to an LPS injury prevented AT1 cell regeneration, led to intraalveolar collagen deposition, and resulted in persistent innate inflammation. These findings establish that AT2 cell Yap/Taz activity is essential for functional alveolar epithelial repair and prevention of fibrotic remodeling.


Assuntos
Lesão Pulmonar Aguda , Fibrose Pulmonar Idiopática , Proteínas de Sinalização YAP , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Colágeno/metabolismo , Fibrose Pulmonar Idiopática/patologia , Inflamação , Regeneração , Transdução de Sinais , Proteínas de Sinalização YAP/metabolismo
4.
Nat Med ; 29(6): 1563-1577, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37291214

RESUMO

Single-cell technologies have transformed our understanding of human tissues. Yet, studies typically capture only a limited number of donors and disagree on cell type definitions. Integrating many single-cell datasets can address these limitations of individual studies and capture the variability present in the population. Here we present the integrated Human Lung Cell Atlas (HLCA), combining 49 datasets of the human respiratory system into a single atlas spanning over 2.4 million cells from 486 individuals. The HLCA presents a consensus cell type re-annotation with matching marker genes, including annotations of rare and previously undescribed cell types. Leveraging the number and diversity of individuals in the HLCA, we identify gene modules that are associated with demographic covariates such as age, sex and body mass index, as well as gene modules changing expression along the proximal-to-distal axis of the bronchial tree. Mapping new data to the HLCA enables rapid data annotation and interpretation. Using the HLCA as a reference for the study of disease, we identify shared cell states across multiple lung diseases, including SPP1+ profibrotic monocyte-derived macrophages in COVID-19, pulmonary fibrosis and lung carcinoma. Overall, the HLCA serves as an example for the development and use of large-scale, cross-dataset organ atlases within the Human Cell Atlas.


Assuntos
COVID-19 , Neoplasias Pulmonares , Fibrose Pulmonar , Humanos , Pulmão , Neoplasias Pulmonares/genética , Macrófagos
5.
bioRxiv ; 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-36993211

RESUMO

Common genetic variants confer substantial risk for chronic lung diseases, including pulmonary fibrosis (PF). Defining the genetic control of gene expression in a cell-type-specific and context-dependent manner is critical for understanding the mechanisms through which genetic variation influences complex traits and disease pathobiology. To this end, we performed single-cell RNA-sequencing of lung tissue from 67 PF and 49 unaffected donors. Employing a pseudo-bulk approach, we mapped expression quantitative trait loci (eQTL) across 38 cell types, observing both shared and cell type-specific regulatory effects. Further, we identified disease-interaction eQTL and demonstrated that this class of associations is more likely to be cell-type specific and linked to cellular dysregulation in PF. Finally, we connected PF risk variants to their regulatory targets in disease-relevant cell types. These results indicate that cellular context determines the impact of genetic variation on gene expression, and implicates context-specific eQTL as key regulators of lung homeostasis and disease.

6.
bioRxiv ; 2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38168317

RESUMO

The human lung is structurally complex, with a diversity of specialized epithelial, stromal and immune cells playing specific functional roles in anatomically distinct locations, and large-scale changes in the structure and cellular makeup of this distal lung is a hallmark of pulmonary fibrosis (PF) and other progressive chronic lung diseases. Single-cell transcriptomic studies have revealed numerous disease-emergent/enriched cell types/states in PF lungs, but the spatial contexts wherein these cells contribute to disease pathogenesis has remained uncertain. Using sub-cellular resolution image-based spatial transcriptomics, we analyzed the gene expression of more than 1 million cells from 19 unique lungs. Through complementary cell-based and innovative cell-agnostic analyses, we characterized the localization of PF-emergent cell-types, established the cellular and molecular basis of classical PF histopathologic disease features, and identified a diversity of distinct molecularly-defined spatial niches in control and PF lungs. Using machine-learning and trajectory analysis methods to segment and rank airspaces on a gradient from normal to most severely remodeled, we identified a sequence of compositional and molecular changes that associate with progressive distal lung pathology, beginning with alveolar epithelial dysregulation and culminating with changes in macrophage polarization. Together, these results provide a unique, spatially-resolved characterization of the cellular and molecular programs of PF and control lungs, provide new insights into the heterogeneous pathobiology of PF, and establish analytical approaches which should be broadly applicable to other imaging-based spatial transcriptomic studies.

7.
Am J Respir Cell Mol Biol ; 67(1): 50-60, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35468042

RESUMO

Immune cells have been implicated in idiopathic pulmonary fibrosis (IPF), but the phenotypes and effector mechanisms of these cells remain incompletely characterized. We performed mass cytometry to quantify immune cell subsets in lungs of 12 patients with IPF and 15 organ donors without chronic lung disease and used existing single-cell RNA-sequencing data to investigate transcriptional profiles of immune cells overrepresented in IPF. Among myeloid cells, we found increased numbers of alveolar macrophages (AMØs) and dendritic cells (DCs) in IPF, as well as a subset of monocyte-derived DCs. In contrast, monocyte-like cells and interstitial macrophages were reduced in IPF. Transcriptomic profiling identified an enrichment for IFN-γ response pathways in AMØs and DCs from IPF, as well as antigen processing in DCs and phagocytosis in AMØs. Among T cells, we identified three subsets of memory T cells that were increased in IPF, including CD4+ and CD8+ resident memory T cells (TRM) and CD8+ effector memory cells. The response to the IFN-γ pathway was enriched in CD4 TRM and CD8 TRM cells in IPF, together with T cell activation and immune response-regulating signaling pathways. Increased AMØs, DCs, and memory T cells were present in IPF lungs compared with control subjects. In IPF, these cells possess an activation profile indicating increased IFN-γ signaling and upregulation of adaptive immunity in the lungs. Together, these studies highlight critical features of the immunopathogenesis of IPF.


Assuntos
Fibrose Pulmonar Idiopática , Análise de Célula Única , Perfilação da Expressão Gênica , Humanos , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Macrófagos Alveolares/metabolismo
8.
Development ; 148(24)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34927678

RESUMO

Lung organogenesis requires precise timing and coordination to effect spatial organization and function of the parenchymal cells. To provide a systematic broad-based view of the mechanisms governing the dynamic alterations in parenchymal cells over crucial periods of development, we performed a single-cell RNA-sequencing time-series yielding 102,571 epithelial, endothelial and mesenchymal cells across nine time points from embryonic day 12 to postnatal day 14 in mice. Combining computational fate-likelihood prediction with RNA in situ hybridization and immunofluorescence, we explore lineage relationships during the saccular to alveolar stage transition. The utility of this publicly searchable atlas resource (www.sucrelab.org/lungcells) is exemplified by discoveries of the complexity of type 1 pneumocyte function and characterization of mesenchymal Wnt expression patterns during the saccular and alveolar stages - wherein major expansion of the gas-exchange surface occurs. We provide an integrated view of cellular dynamics in epithelial, endothelial and mesenchymal cell populations during lung organogenesis.


Assuntos
Desenvolvimento Embrionário/genética , Pulmão/crescimento & desenvolvimento , Células-Tronco Mesenquimais/citologia , Organogênese/genética , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Embrião de Mamíferos/ultraestrutura , Células Epiteliais/citologia , Células Epiteliais/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento/genética , Pulmão/ultraestrutura , Células-Tronco Mesenquimais/ultraestrutura , Camundongos , RNA-Seq , Análise de Célula Única , Transcriptoma/genética
9.
Nat Commun ; 12(1): 4314, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34262047

RESUMO

Patients with chronic lung disease (CLD) have an increased risk for severe coronavirus disease-19 (COVID-19) and poor outcomes. Here, we analyze the transcriptomes of 611,398 single cells isolated from healthy and CLD lungs to identify molecular characteristics of lung cells that may account for worse COVID-19 outcomes in patients with chronic lung diseases. We observe a similar cellular distribution and relative expression of SARS-CoV-2 entry factors in control and CLD lungs. CLD AT2 cells express higher levels of genes linked directly to the efficiency of viral replication and the innate immune response. Additionally, we identify basal differences in inflammatory gene expression programs that highlight how CLD alters the inflammatory microenvironment encountered upon viral exposure to the peripheral lung. Our study indicates that CLD is accompanied by changes in cell-type-specific gene expression programs that prime the lung epithelium for and influence the innate and adaptive immune responses to SARS-CoV-2 infection.


Assuntos
Pneumopatias/genética , SARS-CoV-2/fisiologia , Transcriptoma , Internalização do Vírus , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/genética , COVID-19/patologia , Doença Crônica , Humanos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/patologia , Imunidade Inata/genética , Inflamação/genética , Pulmão/metabolismo , Pulmão/patologia , Pneumopatias/patologia , SARS-CoV-2/patogenicidade , Replicação Viral/genética
10.
J Clin Invest ; 131(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33180746

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) novel coronavirus 2019 (COVID-19) global pandemic has led to millions of cases and hundreds of thousands of deaths. While older adults appear at high risk for severe disease, hospitalizations and deaths due to SARS-CoV-2 among children have been relatively rare. Integrating single-cell RNA sequencing (scRNA-seq) of developing mouse lung with temporally resolved immunofluorescence in mouse and human lung tissue, we found that expression of SARS-CoV-2 Spike protein primer TMPRSS2 was highest in ciliated cells and type I alveolar epithelial cells (AT1), and TMPRSS2 expression increased with aging in mice and humans. Analysis of autopsy tissue from fatal COVID-19 cases detected SARS-CoV-2 RNA most frequently in ciliated and secretory cells in airway epithelium and AT1 cells in peripheral lung. SARS-CoV-2 RNA was highly colocalized in cells expressing TMPRSS2. Together, these data demonstrate the cellular spectrum infected by SARS-CoV-2 in lung epithelium and suggest that developmental regulation of TMPRSS2 may underlie the relative protection of infants and children from severe respiratory illness.


Assuntos
Células Epiteliais Alveolares/enzimologia , COVID-19/enzimologia , COVID-19/metabolismo , Regulação Enzimológica da Expressão Gênica , SARS-CoV-2/metabolismo , Serina Endopeptidases/biossíntese , Adulto , Envelhecimento , Células Epiteliais Alveolares/patologia , Células Epiteliais Alveolares/virologia , Animais , COVID-19/patologia , Pré-Escolar , Modelos Animais de Doenças , Feminino , Humanos , Lactente , Masculino , Camundongos
11.
bioRxiv ; 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33106805

RESUMO

Patients with chronic lung disease (CLD) have an increased risk for severe coronavirus disease-19 (COVID-19) and poor outcomes. Here, we analyzed the transcriptomes of 605,904 single cells isolated from healthy and CLD lungs to identify molecular characteristics of lung cells that may account for worse COVID-19 outcomes in patients with chronic lung diseases. We observed a similar cellular distribution and relative expression of SARS-CoV-2 entry factors in control and CLD lungs. CLD epithelial cells expressed higher levels of genes linked directly to the efficiency of viral replication and innate immune response. Additionally, we identified basal differences in inflammatory gene expression programs that highlight how CLD alters the inflammatory microenvironment encountered upon viral exposure to the peripheral lung. Our study indicates that CLD is accompanied by changes in cell-type-specific gene expression programs that prime the lung epithelium for and influence the innate and adaptive immune responses to SARS-CoV-2 infection.

12.
Sci Adv ; 6(28): eaba1972, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32832598

RESUMO

Pulmonary fibrosis (PF) is a form of chronic lung disease characterized by pathologic epithelial remodeling and accumulation of extracellular matrix (ECM). To comprehensively define the cell types, mechanisms, and mediators driving fibrotic remodeling in lungs with PF, we performed single-cell RNA sequencing of single-cell suspensions from 10 nonfibrotic control and 20 PF lungs. Analysis of 114,396 cells identified 31 distinct cell subsets/states. We report that a remarkable shift in epithelial cell phenotypes occurs in the peripheral lung in PF and identify several previously unrecognized epithelial cell phenotypes, including a KRT5- /KRT17 + pathologic, ECM-producing epithelial cell population that was highly enriched in PF lungs. Multiple fibroblast subtypes were observed to contribute to ECM expansion in a spatially discrete manner. Together, these data provide high-resolution insights into the complexity and plasticity of the distal lung epithelium in human disease and indicate a diversity of epithelial and mesenchymal cells contribute to pathologic lung fibrosis.


Assuntos
Fibrose Pulmonar , Matriz Extracelular/metabolismo , Fibrose , Humanos , Pulmão/metabolismo , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Análise de Sequência de RNA
13.
bioRxiv ; 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32511364

RESUMO

The SARS-CoV-2 novel coronavirus global pandemic (COVID-19) has led to millions of cases and hundreds of thousands of deaths around the globe. While the elderly appear at high risk for severe disease, hospitalizations and deaths due to SARS-CoV-2 among children have been relatively rare. Integrating single-cell RNA sequencing (scRNA-seq) of the developing mouse lung with temporally-resolved RNA-in-situ hybridization (ISH) in mouse and human lung tissue, we found that expression of SARS-CoV-2 Spike protein primer TMPRSS2 was highest in ciliated cells and type I alveolar epithelial cells (AT1), and TMPRSS2 expression was increased with aging in mice and humans. Analysis of autopsy tissue from fatal COVID-19 cases revealed SARS-CoV-2 RNA was detected most frequently in ciliated and secretory cells in the airway epithelium and AT1 cells in the peripheral lung. SARS-CoV-2 RNA was highly colocalized in cells expressing TMPRSS2. Together, these data demonstrate the cellular spectrum infected by SARS-CoV-2 in the lung epithelium, and suggest that developmental regulation of TMPRSS2 may underlie the relative protection of infants and children from severe respiratory illness.

14.
Cell ; 181(5): 1016-1035.e19, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32413319

RESUMO

There is pressing urgency to understand the pathogenesis of the severe acute respiratory syndrome coronavirus clade 2 (SARS-CoV-2), which causes the disease COVID-19. SARS-CoV-2 spike (S) protein binds angiotensin-converting enzyme 2 (ACE2), and in concert with host proteases, principally transmembrane serine protease 2 (TMPRSS2), promotes cellular entry. The cell subsets targeted by SARS-CoV-2 in host tissues and the factors that regulate ACE2 expression remain unknown. Here, we leverage human, non-human primate, and mouse single-cell RNA-sequencing (scRNA-seq) datasets across health and disease to uncover putative targets of SARS-CoV-2 among tissue-resident cell subsets. We identify ACE2 and TMPRSS2 co-expressing cells within lung type II pneumocytes, ileal absorptive enterocytes, and nasal goblet secretory cells. Strikingly, we discovered that ACE2 is a human interferon-stimulated gene (ISG) in vitro using airway epithelial cells and extend our findings to in vivo viral infections. Our data suggest that SARS-CoV-2 could exploit species-specific interferon-driven upregulation of ACE2, a tissue-protective mediator during lung injury, to enhance infection.


Assuntos
Células Epiteliais Alveolares/metabolismo , Enterócitos/metabolismo , Células Caliciformes/metabolismo , Interferon Tipo I/metabolismo , Mucosa Nasal/citologia , Peptidil Dipeptidase A/genética , Adolescente , Células Epiteliais Alveolares/imunologia , Enzima de Conversão de Angiotensina 2 , Animais , Betacoronavirus/fisiologia , COVID-19 , Linhagem Celular , Células Cultivadas , Criança , Infecções por Coronavirus/virologia , Enterócitos/imunologia , Células Caliciformes/imunologia , Infecções por HIV/imunologia , Humanos , Influenza Humana/imunologia , Interferon Tipo I/imunologia , Pulmão/citologia , Pulmão/patologia , Macaca mulatta , Camundongos , Mycobacterium tuberculosis , Mucosa Nasal/imunologia , Pandemias , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/virologia , Receptores Virais/genética , SARS-CoV-2 , Serina Endopeptidases/metabolismo , Análise de Célula Única , Tuberculose/imunologia , Regulação para Cima
15.
Am J Cancer Res ; 7(12): 2422-2437, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29312797

RESUMO

Squamous cell carcinomas of the head and neck (HNSCC) and esophagus (ESCC) pose a global public health issue due to high mortality rates. Unfortunately, little progress has been made in improving patient outcomes. This is partially a result of a lack of understanding the mechanisms that drive SCC progression. Recently, Activin A signaling has been implicated in a number of cancers, yet the role of this pathway in SCC remains poorly understood. We have previously discovered that the Activin A ligand acts as a tumor suppressor when epithelial Activin receptor type IB (ACVRIB) is intact; however, this effect is lost upon ACVRIB downregulation. In the present study, we investigated the function of ACVRIB in the regulation of SCC. Using CRISPR/Cas9-mediated ACVRIB-knockout and knockdown using siRNA, we found an increased capacity to proliferate, migrate, and invade upon ACRIB loss, as ACVRIB-KO cells exhibited an altered cytoskeleton and aberrant expression of E-cadherin and integrins. Based on chemical inhibitor studies, our data suggests that these effects are mediated through ACVRIB-independent signaling via downstream activation of Smad1/5/8 and MEK/ERK. Overall, we present a novel mechanism of SCC progression upon ACVRIB loss by showing that Activin A can transduce a signal in the absence of ACVRIB.

16.
Mol Cancer ; 14: 24, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25644061

RESUMO

BACKGROUND: Tumor metastasis is responsible for 90% of cancer-related deaths. Recently, a strong link between microRNA dysregulation and human cancers has been established. However, the molecular mechanisms through which microRNAs regulate metastasis and cancer progression remain unclear. METHODS: We analyzed the reciprocal expression regulation of miR-31 and SOX4 in esophageal squamous and adenocarcinoma cell lines by qRT-PCR and Western blotting using overexpression and shRNA knock-down approaches. Furthermore, methylation studies were used to assess epigenetic regulation of expression. Functionally, we determined the cellular consequences using migration and invasion assays, as well as proliferation assays. Immunoprecipitation and ChIP were used to identify complex formation of SOX4 and co-repressor components. RESULTS: Here, we report that SOX4 promotes esophageal tumor cell proliferation and invasion by silencing miR-31 via activation and stabilization of a co-repressor complex with EZH2 and HDAC3. We demonstrate that miR-31 is significantly decreased in invasive esophageal cancer cells, while upregulation of miR-31 inhibits growth, migration and invasion of esophageal adenocarcinoma (EAC) and squamous cell carcinoma (ESCC) cell lines. miR-31, in turn, targets SOX4 for degradation by directly binding to its 3'-UTR. Additionally, miR-31 regulates EZH2 and HDAC3 indirectly. SOX4, EZH2 and HDAC3 levels inversely correlate with miR-31 expression in ESCC cell lines. Ectopic expression of miR-31 in ESCC and EAC cell lines leads to down regulation of SOX4, EZH2 and HDAC3. Conversely, pharmacologic and genetic inhibition of SOX4 and EZH2 restore miR-31 expression. We show that SOX4, EZH2 and HDAC3 form a co-repressor complex that binds to the miR-31 promoter, repressing miR-31 through an epigenetic mark by H3K27me3 and by histone acetylation. Clinically, when compared to normal adjacent tissues, esophageal tumor samples show upregulation of SOX4, EZH2, and HDAC3, and EZH2 expression is significantly increased in metastatic ESCC tissues. CONCLUSIONS: Thus, we identified a novel molecular mechanism by which the SOX4, EZH2 and miR-31 circuit promotes tumor progression and potential therapeutic targets for invasive esophageal carcinomas.


Assuntos
Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Regulação Neoplásica da Expressão Gênica , Histona Desacetilases/metabolismo , MicroRNAs/genética , Complexo Repressor Polycomb 2/metabolismo , Fatores de Transcrição SOXC/metabolismo , Regiões 3' não Traduzidas , Sequência de Bases , Sítios de Ligação , Linhagem Celular Tumoral , Regulação para Baixo , Proteína Potenciadora do Homólogo 2 de Zeste , Epigênese Genética , Neoplasias Esofágicas/patologia , Histona Desacetilases/genética , Humanos , MicroRNAs/química , Invasividade Neoplásica , Complexo Repressor Polycomb 2/genética , Ligação Proteica , Interferência de RNA , Proteínas Repressoras/metabolismo , Fatores de Transcrição SOXC/química , Fatores de Transcrição SOXC/genética
17.
Lab Invest ; 94(10): 1134-46, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25068654

RESUMO

Activin A (Act A) is a member of the TGFß superfamily. Act A and TGFß have multiple common downstream targets and have been described to merge in their intracellular signaling cascades and function. We have previously demonstrated that coordinated loss of E-cadherin and TGFß receptor II (TßRII) results in epithelial cell invasion. When grown in three-dimensional organotypic reconstruct cultures, esophageal keratinocytes expressing dominant-negative mutants of E-cadherin and TßRII showed activated Smad2 in the absence of functional TßRII. However, we could show that increased levels of Act A secretion was able to induce Smad2 phosphorylation. Growth factor secretion can activate autocrine and paracrine signaling, which affects crosstalk between the epithelial compartment and the surrounding microenvironment. We show that treatment with the Act A antagonist Follistatin or with a neutralizing Act A antibody can increase cell invasion in organotypic cultures in a fibroblast- and MMP-dependent manner. Similarly, suppression of Act A with shRNA increases cell invasion and tumorigenesis in vivo. Therefore, we conclude that maintaining a delicate balance of Act A expression is critical for homeostasis in the esophageal microenvironment.


Assuntos
Ativinas/fisiologia , Carcinogênese , Carcinoma de Células Escamosas/etiologia , Neoplasias Esofágicas/etiologia , Invasividade Neoplásica , Animais , Células Cultivadas , Feminino , Fibroblastos/fisiologia , Homeostase , Células Endoteliais da Veia Umbilical Humana , Humanos , Metaloproteinases da Matriz/fisiologia , Camundongos Endogâmicos NOD , Camundongos SCID
18.
PLoS One ; 8(2): e56382, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23468863

RESUMO

Activation of PI3K/AKT pathway correlates with poor prognosis in patients with neuroblastoma. Our previous studies have demonstrated that PI3K/AKT signaling is critical for the oncogenic transformations induced by gastrin-releasing peptide (GRP) and its receptor, GRP-R, in neuroblastoma. Moreover, PI3K/AKT-dependent oncogenic transformations require N-myc, an extensively studied oncogene in neuroblastoma. Whether AKT directly regulates the expression of N-myc oncogene is yet to be determined. Here, we report a novel finding that of the three AKT isoforms, AKT2 specifically regulated N-myc expression in neuroblastoma cells. We also confirmed that GRP-R is upstream of AKT2 and in turn, regulated N-myc expression via AKT2 in neuroblastoma cells. Functional assays demonstrated that attenuation of AKT2 impaired cell proliferation and anchorage-independent cell growth, and decreased the secretion of angiogenic factor VEGF in vitro. Furthermore, silencing AKT2 inhibited migration and invasion of neuroblastoma cells in vitro. Xenografts established by injecting AKT2 silenced human neuroblastoma cells into murine spleen expressed decreased levels of AKT2 and resulted in fewer liver metastases compared to controls in vivo. Hence, our study highlights the potential molecular mechanism(s) mediating the oncogenic role of GRP/GRP-R and demonstrates a novel role for AKT2 in neuroblastoma tumorigenesis, indicating that targeting the GRP/GRP-R/AKT2 axis may be important for developing novel therapeutics in the treatment of clinically aggressive neuroblastoma.


Assuntos
Neuroblastoma/genética , Neuroblastoma/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Genes myc , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundário , Masculino , Camundongos , Metástase Neoplásica , Neuroblastoma/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Acoplados a Proteínas G
19.
Surgery ; 150(2): 162-8, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21719054

RESUMO

BACKGROUND: The phosphatidylinositol 3-kinase (PI3K), a critical intracellular pathway, is negatively regulated by phosphatase and tensin homologue (PTEN). Integrin-linked kinase (ILK) induces phosphorylation of Akt leading to an increase in cell survival. However, a potential interaction between ILK and PTEN activity in neuroblastoma cells is unknown. We sought to examine the relationship between ILK and PTEN in the PI3K/Akt signaling pathway in neuroblastoma tumorigenesis. METHODS: The human neuroblastoma cell line, BE(2)-C, was transfected with small interfering or short hairpin RNA to silence ILK expression. A plasmid containing the ILK wild-type (ILK wt) gene was transfected to overexpress ILK. Cell proliferation was assessed, and anchorage independence was measured by soft agar assay. Insulin-like growth factor-1 was used to stimulate the PI3K/Akt pathway. Protein levels were determined by Western blotting. RESULTS: Transient silencing of ILK produced correlative decreases in PTEN expression, cell proliferation, and soft agar colony formation. Conversely, stably transfected ILK knockdown cells showed an increase in phospho-Akt levels, leading to cell proliferation. CONCLUSION: ILK plays an important role in the regulation of PI3K/Akt pathway via PTEN or an upstream effector of PTEN. The effects of ILK silencing on PTEN expression seem to be critically dependent on duration of ILK dysregulation.


Assuntos
Neuroblastoma/fisiopatologia , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Humanos , Neuroblastoma/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA