Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanoscale Adv ; 5(18): 4687-4695, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37705772

RESUMO

With solar cells reaching 26.1% certified efficiency, hybrid perovskites are now the most efficient thin film photovoltaic material. Though substantial effort has focussed on synthesis approaches and device architectures to further improve perovskite-based solar cells, more work is needed to correlate physical properties of the underlying film structure with device performance. Here, using cathodoluminescence microscopy coupled with unsupervised machine learning, we quantify how nanoscale heterogeneity globally builds up within a large morphological grain of hybrid perovskite when exposed to extrinsic stimuli such as charge accumulation from electron beams or milder environmental factors like humidity. The converged electron-beam excitation allows us to map PbI2 and the emergence of other intermediate phases with high spatial and energy resolution. In contrast with recent reports of hybrid perovskite cathodoluminescence, we observe no significant change in the PbI2 signatures, even after high-energy electron beam excitation. In fact, we can exploit the stable PbI2 signatures to quantitatively map how hybrid perovskites degrade. Moreover, we show how our methodology allows disentangling of the photophysics associated with photon recycling and band-edge emission with sub-micron resolution using a fundamental understanding of electron interactions in hybrid perovskites.

2.
Nanoscale ; 14(47): 17519-17527, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36409224

RESUMO

Coupling between light and matter strongly depends on the polarization of the electromagnetic field and the nature of excitations in a material. As hybrid perovskites emerge as a promising class of materials for light-based technologies such as LEDs, LASERs, and photodetectors, it is critical to understand how their microstructure changes the intrinsic properties of the photon emission process. While the majority of optical studies have focused on the spectral content, quantum efficiency and lifetimes of emission in various hybrid perovskite thin films and nanostructures, few studies have investigated other properties of the emitted photons such as polarization and emission angle. Here, we use angle-resolved cathodoluminescence microscopy to access the full polarization state of photons emitted from large-grain hybrid perovskite films with spatial resolution well below the optical diffraction limit. Mapping these Stokes parameters as a function of the angle at which the photons are emitted from the thin film surface, we reveal the effect of a grain boundary on the degree of polarization and angle at which the photons are emitted. Such studies of angle- and polarization-resolved emission at the single grain level are necessary for future development of perovskite-based flat optics, where effects of grain boundaries and interfaces need to be mitigated.

3.
J Med Entomol ; 57(2): 542-550, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-31755530

RESUMO

Here we conducted a systematic review and meta-analysis to reach a consensus on whether infected and uninfected mosquitoes respond differently to repellents. After screening 2,316 published studies, theses, and conference abstracts, we identified 18 studies that tested whether infection status modulated the effectiveness of repellents. Thirteen of these studies had outcomes available for meta-analysis, and overall, seven repellents were tested (typically DEET with 62% of outcomes), six mosquito species had repellence behaviors measured (typically Aedes aegypti (L.) (Diptera: Culicidae) mosquitoes with 71% of outcomes), and a broad diversity of infections were tested including Sindbis virus (Togaviridae: Alphavirus) (33% of outcomes), Dengue (Flaviviridae: Flavivirus) (31%), malaria (Plasmodium berghei Vincke & Lips (Haemospororida: Plasmodiidae) or P. falciparum Welch (Haemospororida: Plasmodiidae); 25%), Zika (Flaviviridae: Flavivirus) (7%), and microsporidia (4%). Pooling all outcomes with meta-analysis, we found that repellents were less effective against infected mosquitoes-marking an average 62% reduction in protective efficacy relative to uninfected mosquitoes (pooled odds ratio = 0.38, 95% confidence interval = 0.22-0.66; k = 96). Older infected mosquitoes were also more likely to show altered responses and loss of sensitivity to repellents, emphasizing the challenge of distinguishing between age or incubation period effects. Plasmodium- or Dengue-infected mosquitoes also did not show altered responses to repellents; however, Dengue-mosquito systems used inoculation practices that can introduce variability in repellency responses. Given our findings that repellents offer less protection against infected mosquitoes and that these vectors are the most dangerous in terms of disease transmission, then trials on repellent effectiveness should incorporate infected mosquitoes to improve predictability in blocking vector-human contact.


Assuntos
Aedes/efeitos dos fármacos , Anopheles/efeitos dos fármacos , Culex/efeitos dos fármacos , Repelentes de Insetos/farmacologia , Controle de Mosquitos/estatística & dados numéricos , Mosquitos Vetores/efeitos dos fármacos , Aedes/parasitologia , Aedes/fisiologia , Aedes/virologia , Animais , Anopheles/parasitologia , Anopheles/fisiologia , Anopheles/virologia , Culex/parasitologia , Culex/fisiologia , Culex/virologia , Mosquitos Vetores/parasitologia , Mosquitos Vetores/fisiologia , Mosquitos Vetores/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA