Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Biol Chem ; 300(3): 105749, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354778

RESUMO

Protein engineering and screening of processive fungal cellobiohydrolases (CBHs) remain challenging due to limited expression hosts, synergy-dependency, and recalcitrant substrates. In particular, glycoside hydrolase family 7 (GH7) CBHs are critically important for the bioeconomy and typically difficult to engineer. Here, we target the discovery of highly active natural GH7 CBHs and engineering of variants with improved activity. Using experimentally assayed activities of genome mined CBHs, we applied sequence and structural alignments to top performers to identify key point mutations linked to improved activity. From ∼1500 known GH7 sequences, an evolutionarily diverse subset of 57 GH7 CBH genes was expressed in Trichoderma reesei and screened using a multiplexed activity screening assay. Ten catalytically enhanced natural variants were identified, produced, purified, and tested for efficacy using industrially relevant conditions and substrates. Three key amino acids in CBHs with performance comparable or superior to Penicillium funiculosum Cel7A were identified and combinatorially engineered into P. funiculosum cel7a, expressed in T. reesei, and assayed on lignocellulosic biomass. The top performer generated using this combined approach of natural diversity genome mining, experimental assays, and computational modeling produced a 41% increase in conversion extent over native P. funiculosum Cel7A, a 55% increase over the current industrial standard T. reesei Cel7A, and 10% improvement over Aspergillus oryzae Cel7C, the best natural GH7 CBH previously identified in our laboratory.


Assuntos
Celulose 1,4-beta-Celobiosidase , Ensaios Enzimáticos , Genoma Fúngico , Mutação , Engenharia de Proteínas , Aspergillus oryzae/enzimologia , Aspergillus oryzae/genética , Celulose 1,4-beta-Celobiosidase/química , Celulose 1,4-beta-Celobiosidase/classificação , Celulose 1,4-beta-Celobiosidase/genética , Celulose 1,4-beta-Celobiosidase/metabolismo , Genoma Fúngico/genética , Engenharia de Proteínas/métodos , Especificidade por Substrato , Talaromyces/enzimologia , Talaromyces/genética , Trichoderma/enzimologia , Trichoderma/genética , Trichoderma/metabolismo , Biocatálise
2.
Nat Commun ; 9(1): 1186, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29567941

RESUMO

Glycoside Hydrolase Family 7 cellobiohydrolases (GH7 CBHs) catalyze cellulose depolymerization in cellulolytic eukaryotes, making them key discovery and engineering targets. However, there remains a lack of robust structure-activity relationships for these industrially important cellulases. Here, we compare CBHs from Trichoderma reesei (TrCel7A) and Penicillium funiculosum (PfCel7A), which exhibit a multi-modular architecture consisting of catalytic domain (CD), carbohydrate-binding module, and linker. We show that PfCel7A exhibits 60% greater performance on biomass than TrCel7A. To understand the contribution of each domain to this improvement, we measure enzymatic activity for a library of CBH chimeras with swapped subdomains, demonstrating that the enhancement is mainly caused by PfCel7A CD. We solve the crystal structure of PfCel7A CD and use this information to create a second library of TrCel7A CD mutants, identifying a TrCel7A double mutant with near-equivalent activity to wild-type PfCel7A. Overall, these results reveal CBH regions that enable targeted activity improvements.


Assuntos
Celulose 1,4-beta-Celobiosidase/genética , Celulose 1,4-beta-Celobiosidase/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Penicillium/enzimologia , Trichoderma/enzimologia , Domínio Catalítico , Celulose 1,4-beta-Celobiosidase/química , Proteínas Fúngicas/química , Cinética , Simulação de Dinâmica Molecular , Penicillium/química , Penicillium/genética , Conformação Proteica , Engenharia de Proteínas , Trichoderma/química , Trichoderma/genética
3.
Proc Natl Acad Sci U S A ; 114(52): 13667-13672, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29229855

RESUMO

In nature, many microbes secrete mixtures of glycoside hydrolases, oxidoreductases, and accessory enzymes to deconstruct polysaccharides and lignin in plants. These enzymes are often decorated with N- and O-glycosylation, the roles of which have been broadly attributed to protection from proteolysis, as the extracellular milieu is an aggressive environment. Glycosylation has been shown to sometimes affect activity, but these effects are not fully understood. Here, we examine N- and O-glycosylation on a model, multimodular glycoside hydrolase family 7 cellobiohydrolase (Cel7A), which exhibits an O-glycosylated carbohydrate-binding module (CBM) and an O-glycosylated linker connected to an N- and O-glycosylated catalytic domain (CD)-a domain architecture common to many biomass-degrading enzymes. We report consensus maps for Cel7A glycosylation that include glycan sites and motifs. Additionally, we examine the roles of glycans on activity, substrate binding, and thermal and proteolytic stability. N-glycan knockouts on the CD demonstrate that N-glycosylation has little impact on cellulose conversion or binding, but does have major stability impacts. O-glycans on the CBM have little impact on binding, proteolysis, or activity in the whole-enzyme context. However, linker O-glycans greatly impact cellulose conversion via their contribution to proteolysis resistance. Molecular simulations predict an additional role for linker O-glycans, namely that they are responsible for maintaining separation between ordered domains when Cel7A is engaged on cellulose, as models predict α-helix formation and decreased cellulose interaction for the nonglycosylated linker. Overall, this study reveals key roles for N- and O-glycosylation that are likely broadly applicable to other plant cell-wall-degrading enzymes.


Assuntos
Celulase/metabolismo , Polissacarídeos/metabolismo , Celulase/química , Ativação Enzimática , Estabilidade Enzimática , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Glicosilação , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Modelos Moleculares , Conformação Molecular , Polissacarídeos/química , Proteólise , Temperatura de Transição
4.
Biotechnol Biofuels ; 10: 34, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28184247

RESUMO

BACKGROUND: The industrial workhorse fungus, Trichoderma reesei, is typically exploited for its ability to produce cellulase enzymes, whereas use of this fungus for over-expression of other proteins (homologous and heterologous) is still very limited. Identifying transformants expressing target protein is a tedious task due to low transformation efficiency, combined with highly variable expression levels between transformants. Routine methods for identification include PCR-based analysis, western blotting, or crude activity screening, all of which are time-consuming techniques. To simplify this screening, we have adapted the 2A peptide system from the foot-and-mouth disease virus (FMDV) to T. reesei to express a readily screenable marker protein that is co-translated with a target protein. The 2A peptide sequence allows multiple independent genes to be transcribed as a single mRNA. Upon translation, the 2A peptide sequence causes a "ribosomal skip" generating two (or more) independent gene products. When the 2A peptide is translated, the "skip" occurs between its two C-terminal amino acids (glycine and proline), resulting in the addition of extra amino acids on the C terminus of the upstream protein and a single proline addition to the N terminus of the downstream protein. To test this approach, we have cloned two heterologous proteins on either side of a modified 2A peptide, a secreted cellobiohydrolase enzyme (Cel7A from Penicillium funiculosum) as our target protein, and an intracellular enhanced green fluorescent protein (eGFP) as our marker protein. Using straightforward monitoring of eGFP expression, we have shown that we can efficiently monitor the expression of the target Cel7A protein. RESULTS: Co-expression of Cel7A and eGFP via the FMDV 2A peptide sequence resulted in successful expression of both test proteins in T. reesei. Separation of these two polypeptides via the modified 2A peptide was ~100% efficient. The Cel7A was efficiently secreted, whereas the eGFP remained intracellular. Both proteins were expressed when cloned in either order, i.e., Cel7A-2A-eGFP (C2G) or eGFP-2A-Cel7A (G2C); however, eGFP expression and/or functionality were dependent upon the order of transcription. Specifically, expression of Cel7A was linked to eGFP expression in the C2G orientation, whereas expression of Cel7A could not be reliably correlated to eGFP fluorescence in the G2C construct. Whereas eGFP stability and/or fluorescence were affected by gene order, Cel7A was expressed, secreted, and exhibited the expected functionality in both the G2C and C2G orientations. CONCLUSIONS: We have successfully demonstrated that two structurally unrelated proteins can be expressed in T. reesei using the FMDV 2A peptide approach; however, the order of the genes can be important. The addition of a single proline to the N terminus of eGFP in the C2G orientation did not appear to affect fluorescence, which correlated well with Cel7A expression. The addition of 21 amino acids to the C terminus of eGFP in the G2C orientation, however, appeared to severely reduce fluorescence and/or stability, which could not be linked with Cel7A expression. The molecular biology tool that we have implemented in this study will provide an efficient strategy to test the expression of heterologous proteins in T. reesei, while also providing a novel platform for developing this fungus as an efficient multi-protein-expressing host using a single polycistronic gene expression cassette. An additional advantage of this system is that the co-expressed proteins can be theoretically produced at equimolar ratios, as (A) they all originate from a single transcript and (B) unlike internal ribosome entry site (IRES)-mediated polycistronic expression, each cistron should be translated equimolarly as there is no ribosomal dissociation or reloading between cistrons.

5.
Curr Biotechnol ; 6(2): 128-138, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29732275

RESUMO

Commercial fungal cellulases used in biomass-to-biofuels processes can be grouped into three general classes: native, augmented, and engineered. Colorimetric assays for general glycoside hydrolase activities showed distinct differences in enzyme binding to lignin for each enzyme activity. Native cellulase preparations demonstrated low binding of endo- and exocellulases, high binding of xylanase, and moderate binding for ß-D-glucosidases. Engineered cellulase formulations exhibited low binding of exocellulases, very strong binding of endocellulases and ß-D-glucosidase, and mixed binding of xylanase activity. The augmented cellulase had low binding of exocellulase, high binding of endocellulase and xylanase, and moderate binding of ß-D-glucosidase activities. Bound and unbound activities were correlated to general molecular weight ranges of proteins as measured by loss of proteins bands in bound fractions on SDS-PAGE gels. Lignin-bound high molecular weight bands correlated to binding of ß-D-glucosidase activity. Whereas ß-D-glucosidases demonstrated high binding in many cases, they have been shown to remain active. Bound low molecular weight bands correlated to xylanase activity binding. Contrary to other literature, exocellulase activity did not show strong lignin binding. The variation in enzyme activity binding between these three classes of cellulases preparations indicates that it is possible to alter the binding of specific glycoside hydrolase activities during the enzyme formulation process. It remains unclear whether or not loss of endocellulase activity to lignin binding is problematic for biomass conversion.

6.
Appl Environ Microbiol ; 82(11): 3395-409, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27037126

RESUMO

UNLABELLED: Glycoside hydrolase family 7 (GH7) cellobiohydrolases (CBHs) are enzymes commonly employed in plant cell wall degradation across eukaryotic kingdoms of life, as they provide significant hydrolytic potential in cellulose turnover. To date, many fungal GH7 CBHs have been examined, yet many questions regarding structure-activity relationships in these important natural and commercial enzymes remain. Here, we present the crystal structures and a biochemical analysis of two GH7 CBHs from social amoeba: Dictyostelium discoideum Cel7A (DdiCel7A) and Dictyostelium purpureum Cel7A (DpuCel7A). DdiCel7A and DpuCel7A natively consist of a catalytic domain and do not exhibit a carbohydrate-binding module (CBM). The structures of DdiCel7A and DpuCel7A, resolved to 2.1 Å and 2.7 Å, respectively, are homologous to those of other GH7 CBHs with an enclosed active-site tunnel. Two primary differences between the Dictyostelium CBHs and the archetypal model GH7 CBH, Trichoderma reesei Cel7A (TreCel7A), occur near the hydrolytic active site and the product-binding sites. To compare the activities of these enzymes with the activity of TreCel7A, the family 1 TreCel7A CBM and linker were added to the C terminus of each of the Dictyostelium enzymes, creating DdiCel7ACBM and DpuCel7ACBM, which were recombinantly expressed in T. reesei DdiCel7ACBM and DpuCel7ACBM hydrolyzed Avicel, pretreated corn stover, and phosphoric acid-swollen cellulose as efficiently as TreCel7A when hydrolysis was compared at their temperature optima. The Ki of cellobiose was significantly higher for DdiCel7ACBM and DpuCel7ACBM than for TreCel7A: 205, 130, and 29 µM, respectively. Taken together, the present study highlights the remarkable degree of conservation of the activity of these key natural and industrial enzymes across quite distant phylogenetic trees of life. IMPORTANCE: GH7 CBHs are among the most important cellulolytic enzymes both in nature and for emerging industrial applications for cellulose breakdown. Understanding the diversity of these key industrial enzymes is critical to engineering them for higher levels of activity and greater stability. The present work demonstrates that two GH7 CBHs from social amoeba are surprisingly quite similar in structure and activity to the canonical GH7 CBH from the model biomass-degrading fungus T. reesei when tested under equivalent conditions (with added CBM-linker domains) on an industrially relevant substrate.


Assuntos
Celulose 1,4-beta-Celobiosidase/química , Celulose 1,4-beta-Celobiosidase/metabolismo , Celulose/metabolismo , Dictyostelium/enzimologia , Celulose 1,4-beta-Celobiosidase/genética , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica
7.
Biotechnol Biofuels ; 8: 214, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26691693

RESUMO

BACKGROUND: Non-specific binding of cellulases to lignin has been implicated as a major factor in the loss of cellulase activity during biomass conversion to sugars. It is believed that this binding may strongly impact process economics through loss of enzyme activities during hydrolysis and enzyme recycling scenarios. The current model suggests glycoside hydrolase activities are lost though non-specific/non-productive binding of carbohydrate-binding domains to lignin, limiting catalytic site access to the carbohydrate components of the cell wall. RESULTS: In this study, we have compared component enzyme affinities of a commercial Trichoderma reesei cellulase formulation, Cellic CTec2, towards extracted corn stover lignin using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and p-nitrophenyl substrate activities to monitor component binding, activity loss, and total protein binding. Protein binding was strongly affected by pH and ionic strength. ß-d-glucosidases and xylanases, which do not have carbohydrate-binding modules (CBMs) and are basic proteins, demonstrated the strongest binding at low ionic strength, suggesting that CBMs are not the dominant factor in enzyme adsorption to lignin. Despite strong adsorption to insoluble lignin, ß-d-glucosidase and xylanase activities remained high, with process yields decreasing only 4-15 % depending on lignin concentration. CONCLUSION: We propose that specific enzyme adsorption to lignin from a mixture of biomass-hydrolyzing enzymes is a competitive affinity where ß-d-glucosidases and xylanases can displace CBM interactions with lignin. Process parameters, such as temperature, pH, and salt concentration influence the individual enzymes' affinity for lignin, and both hydrophobic and electrostatic interactions are responsible for this binding phenomenon. Moreover, our results suggest that concern regarding loss of critical cell wall degrading enzymes to lignin adsorption may be unwarranted when complex enzyme mixtures are used to digest biomass.

8.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 9): 1946-54, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26327384

RESUMO

The unique active site of the Caldicellulosiruptor bescii family 3 pectate lyase (PL3) enzyme has been thoroughly characterized using a series of point mutations, X-ray crystallography, pK(a) calculations and biochemical assays. The X-ray structures of seven PL3 active-site mutants, five of them in complex with intact trigalacturonic acid, were solved and characterized structurally, biochemically and computationally. The results confirmed that Lys108 is the catalytic base, but there is no clear candidate for the catalytic acid. However, the reaction mechanism can also be explained by an antiperiplanar trans-elimination reaction, in which Lys108 abstracts a proton from the C5 atom without the help of simultaneous proton donation by an acidic residue. An acidified water molecule completes the anti ß-elimination reaction by protonating the O4 atom of the substrate. Both the C5 hydrogen and C4 hydroxyl groups of the substrate must be orientated in axial configurations, as for galacturonic acid, for this to be possible. The wild-type C. bescii PL3 displays a pH optimum that is lower than that of Bacillus subtilis PL1 according to activity measurements, indicating that C. bescii PL3 has acquired a lower pH optimum by utilizing lysine instead of arginine as the catalytic base, as well as by lowering the pK(a) of the catalytic base in a unique active-site environment.


Assuntos
Concentração de Íons de Hidrogênio , Polissacarídeo-Liases/química , Thermoanaerobacter/enzimologia , Catálise , Cristalografia por Raios X , Modelos Moleculares
9.
Biotechnol Biofuels ; 8: 45, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25904982

RESUMO

BACKGROUND: One of the primary industrial-scale cellulase producers is the ascomycete fungus, Hypocrea jecorina, which produces and secretes large quantities of diverse cellulolytic enzymes. Perhaps the single most important biomass degrading enzyme is cellobiohydrolase I (cbh1or Cel7A) due to its enzymatic proficiency in cellulose depolymerization. However, production of Cel7A with native-like properties from heterologous expression systems has proven difficult. In this study, we develop a protein expression system in H. jecorina (Trichoderma reesei) useful for production and secretion of heterologous cellobiohydrolases from glycosyl hydrolase family 7. Building upon previous work in heterologous protein expression in filamentous fungi, we have integrated a native constitutive enolase promoter with the native cbh1 signal sequence. RESULTS: The constitutive eno promoter driving the expression of Cel7A allows growth on glucose and results in repression of the native cellulase system, severely reducing background endo- and other cellulase activity and greatly simplifying purification of the recombinant protein. Coupling this system to a Δcbh1 strain of H. jecorina ensures that only the recombinant Cel7A protein is produced. Two distinct transformant colony morphologies were observed and correlated with high and null protein production. Production levels in 'fast' transformants are roughly equivalent to those in the native QM6a strain of H. jecorina, typically in the range of 10 to 30 mg/L when grown in continuous stirred-tank fermenters. 'Slow' transformants showed no evidence of Cel7A production. Specific activity of the purified recombinant Cel7A protein is equivalent to that of native protein when assayed on pretreated corn stover, as is the thermal stability and glycosylation level. Purified Cel7A produced from growth on glucose demonstrated remarkably consistent specific activity. Purified Cel7A from the same strain grown on lactose demonstrated significantly higher variability in activity. CONCLUSIONS: The elimination of background cellulase induction provides much more consistent measured specific activity compared to a traditional cbh1 promoter system induced with lactose. This expression system provides a powerful tool for the expression and comparison of mutant and/or phylogenetically diverse cellobiohydrolases in the industrially relevant cellulase production host H. jecorina.

10.
Biotechnol Adv ; 33(1): 142-154, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25479282

RESUMO

Hypocrea jecorina, the sexual teleomorph of Trichoderma reesei, has long been favored as an industrial cellulase producer, first utilizing its native cellulase system and later augmented by the introduction of heterologous enzymatic activities or improved variants of native enzymes. Expression of heterologous proteins in H. jecorina was once considered difficult when the target was an improved variant of a native cellulase. Developments over the past nearly 30 years have produced strains, vectors, and selection mechanisms that have continued to simplify and streamline heterologous protein expression in this fungus. More recent developments in fungal molecular biology have pointed the way toward a fundamental transformation in the ease and efficiency of heterologous protein expression in this important industrial host. Here, 1) we provide a historical perspective on advances in H. jecorina molecular biology, 2) outline host strain engineering, transformation, selection, and expression strategies, 3) detail potential pitfalls when working with this organism, and 4) provide consolidated examples of successful cellulase expression outcomes from our laboratory.


Assuntos
Celulase/metabolismo , Proteínas Fúngicas/metabolismo , Hypocrea/metabolismo , Microbiologia Industrial , Trichoderma/metabolismo , Celulase/genética , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Genes Fúngicos , Loci Gênicos , Hypocrea/genética , Filogenia , Regiões Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Trichoderma/genética
11.
Biotechnol Biofuels ; 7(1): 170, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25489338

RESUMO

INTRODUCTION: The efficient conversion of lignocellulosic feedstocks remains a key step in the commercialization of biofuels. One of the barriers to cost-effective conversion of lignocellulosic biomass to sugars remains the enzymatic saccharification process step. Here, we describe a novel hybrid processing approach comprising enzymatic pre-digestion with newly characterized hyperthermophilic enzyme cocktails followed by conventional saccharification with commercial enzyme preparations. Dilute acid pretreated corn stover was subjected to this new procedure to test its efficacy. Thermal tolerant enzymes from Acidothermus cellulolyticus and Caldicellulosiruptor bescii were used to pre-digest pretreated biomass at elevated temperatures prior to saccharification by the commercial cellulase formulation. RESULTS: We report that pre-digestion of biomass with these enzymes at elevated temperatures prior to addition of the commercial cellulase formulation increased conversion rates and yields when compared to commercial cellulase formulation alone under low solids conditions. CONCLUSION: Our results demonstrating improvements in rates and yields of conversion point the way forward for hybrid biomass conversion schemes utilizing catalytic amounts of hyperthermophilic enzymes.

12.
Biotechnol Biofuels ; 7(1): 148, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25337149

RESUMO

BACKGROUND: Yarrowia lipolytica is an oleaginous yeast capable of metabolizing glucose to lipids, which then accumulate intracellularly. However, it lacks the suite of cellulolytic enzymes required to break down biomass cellulose and cannot therefore utilize biomass directly as a carbon source. Toward the development of a direct microbial conversion platform for the production of hydrocarbon fuels from cellulosic biomass, the potential for Y. lipolytica to function as a consolidated bioprocessing strain was investigated by first conducting a genomic search and functional testing of its endogenous glycoside hydrolases. Once the range of endogenous enzymes was determined, the critical cellulases from Trichoderma reesei were cloned into Yarrowia. RESULTS: Initially, work to express T. reesei endoglucanase II (EGII) and cellobiohydrolase (CBH) II in Y. lipolytica resulted in the successful secretion of active enzymes. However, a critical cellulase, T. reesei CBHI, while successfully expressed in and secreted from Yarrowia, showed less than expected enzymatic activity, suggesting an incompatibility (probably at the post-translational level) for its expression in Yarrowia. This result prompted us to evaluate alternative or modified CBHI enzymes. Our subsequent expression of a T. reesei-Talaromyces emersonii (Tr-Te) chimeric CBHI, Chaetomium thermophilum CBHI, and Humicola grisea CBHI demonstrated remarkably improved enzymatic activities. Specifically, the purified chimeric Tr-Te CBHI showed a specific activity on Avicel that is comparable to that of the native T. reesei CBHI. Furthermore, the chimeric Tr-Te CBHI also showed significant synergism with EGII and CBHII in degrading cellulosic substrates, using either mixed supernatants or co-cultures of the corresponding Y. lipolytica transformants. The consortia system approach also allows rational volume mixing of the transformant cultures in accordance with the optimal ratio of cellulases required for efficient degradation of cellulosic substrates. CONCLUSIONS: Taken together, this work demonstrates the first case of successful expression of a chimeric CBHI with essentially full native activity in Y. lipolytica, and supports the notion that Y. lipolytica strains can be genetically engineered, ultimately by heterologous expression of fungal cellulases and other enzymes, to directly convert lignocellulosic substrates to biofuels.

13.
Biotechnol Biofuels ; 7(1): 151, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25342974

RESUMO

BACKGROUND: Enzymatic hydrolysis of pretreated lignocellulosic biomass is an essential process for the production of fermentable sugars for industrial use. A better understanding of fungal cellulase systems will provide clues for maximizing the hydrolysis of target biomass. Talaromyces cellulolyticus is a promising fungus for cellulase production and efficient biomass hydrolysis. Several cellulolytic enzymes purified from T. cellulolyticus were characterized in earlier studies, but the core enzymes critical for hydrolysis of lignocellulosic biomass remain unknown. RESULTS: Six cellulolytic enzymes critical for the hydrolysis of crystalline cellulose were purified from T. cellulolyticus culture supernatant using an enzyme assay based on synergistic hydrolysis of Avicel. The purified enzymes were identified by their substrate specificities and analyses of trypsin-digested peptide fragments and were classified into the following glycosyl hydrolase (GH) families: GH3 (ß-glucosidase, Bgl3A), GH5 (endoglucanase, Cel5A), GH6 (cellobiohydrolase II, Cel6A), GH7 (cellobiohydrolase I and endoglucanase, Cel7A and Cel7B, respectively), and GH10 (xylanase, Xyl10A). Hydrolysis of dilute acid-pretreated corn stover (PCS) with mixtures of the purified enzymes showed that Cel5A, Cel7B, and Xyl10A each had synergistic effects with a mixture of Cel6A and Cel7A. Cel5A seemed to be more effective in the synergistic hydrolysis of the PCS than Cel7B. The ratio of Cel5A, Cel6A, Cel7A, and Xyl10A was statistically optimized for the hydrolysis of PCS glucan in the presence of Bgl3A. The resultant mixture achieved higher PCS glucan hydrolysis at lower enzyme loading than a culture filtrate from T. cellulolyticus or a commercial enzyme preparation, demonstrating that the five enzymes play a role as core enzymes in the hydrolysis of PCS glucan. CONCLUSIONS: Core cellulolytic enzymes in the T. cellulolyticus cellulase system were identified to Cel5A, Cel6A, Cel7A, Xyl10A, and Bgl3A and characterized. The optimized mixture of these five enzymes was highly effective for the hydrolysis of PCS glucan, providing a foundation for future improvement of the T. cellulolyticus cellulase system.

14.
J Biol Chem ; 289(30): 20960-9, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-24876380

RESUMO

The inhibitory action of lignin on cellulase cocktails is a major challenge to the biological saccharification of plant cell wall polysaccharides. Although the mechanism remains unclear, hydrophobic interactions between enzymes and lignin are hypothesized to drive adsorption. Here we evaluate the role of hydrophobic interactions in enzyme-lignin binding. The hydrophobicity of the enzyme surface was quantified using an estimation of the clustering of nonpolar atoms, identifying potential interaction sites. The adsorption of enzymes to lignin surfaces, measured using the quartz crystal microbalance, correlates to the hydrophobic cluster scores. Further, these results suggest a minimum hydrophobic cluster size for a protein to preferentially adsorb to lignin. The impact of electrostatic contribution was ruled out by comparing the isoelectric point (pI) values to the adsorption of proteins to lignin surfaces. These results demonstrate the ability to predict enzyme-lignin adsorption and could potentially be used to design improved cellulase cocktails, thus lowering the overall cost of biofuel production.


Assuntos
Aspergillus/enzimologia , Proteínas Fúngicas/química , Lignina/química , Oxigenases/química , Adsorção , Interações Hidrofóbicas e Hidrofílicas , Técnicas de Microbalança de Cristal de Quartzo
15.
Protein Expr Purif ; 94: 40-5, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24211645

RESUMO

Cellulose-inducible endo-ß-1,4-xylanase (Xyl10A) from the mesophilic fungus Acremonium cellulolyticus was purified, characterized, and expressed by a homologous expression system. A. cellulolyticus CF-2612 produces a high level of xylanase upon induction by Solka-Floc cellulose. To identify this xylanase, the major fraction showing xylanase activity was purified from the CF-2612 culture supernatant, and its gene was identified from the genome sequence. Amino acid sequence homology of Xyl10A revealed that the purified xylanase, designated Xyl10A, exhibited significant homology to family 10 of the glycoside hydrolases (GH10), possessing a cellulose-binding module 1 in the C-terminal region. The xyl10A gene was cloned and expressed in A. cellulolyticus under the control of a glucoamylase promoter. Two recombinant Xyl10As (rXyl10A-I, 53kDa, and rXyl10A-II, 51kDa) were purified that have slightly different molecular weights based on SDS-PAGE. The rXyl10As had the same physicochemical and enzymatic properties as wtXyl10A: high thermostability (Tm 80.5°C), optimum pH 5.0 and specific activity 232-251U/mg for birchwood xylan. The molecular weights of N-deglycosylated rXyl10As were consistent with that of wild-type Xyl10A (wtXyl10A, 51kDa).


Assuntos
Acremonium/enzimologia , Endo-1,4-beta-Xilanases/genética , Xilanos/metabolismo , Celulose/química , Clonagem Molecular , Endo-1,4-beta-Xilanases/biossíntese , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/isolamento & purificação , Regulação Fúngica da Expressão Gênica , Glucana 1,4-alfa-Glucosidase/genética , Regiões Promotoras Genéticas , Homologia de Sequência de Aminoácidos , Xilanos/química
16.
PLoS One ; 8(9): e71068, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24023719

RESUMO

Lipid production by oleaginous microorganisms is a promising route to produce raw material for the production of biodiesel. However, most of these organisms must be grown on sugars and agro-industrial wastes because they cannot directly utilize lignocellulosic substrates. We report the first comprehensive investigation of Mucor circinelloides, one of a few oleaginous fungi for which genome sequences are available, for its potential to assimilate cellulose and produce lipids. Our genomic analysis revealed the existence of genes encoding 13 endoglucanases (7 of them secretory), 3 ß-D-glucosidases (2 of them secretory) and 243 other glycoside hydrolase (GH) proteins, but not genes for exoglucanases such as cellobiohydrolases (CBH) that are required for breakdown of cellulose to cellobiose. Analysis of the major PAGE gel bands of secretome proteins confirmed expression of two secretory endoglucanases and one ß-D-glucosidase, along with a set of accessory cell wall-degrading enzymes and 11 proteins of unknown function. We found that M. circinelloides can grow on CMC (carboxymethyl cellulose) and cellobiose, confirming the enzymatic activities of endoglucanases and ß-D-glucosidases, respectively. The data suggested that M. circinelloides could be made usable as a consolidated bioprocessing (CBP) strain by introducing a CBH (e.g. CBHI) into the microorganism. This proposal was validated by our demonstration that M. circinelloides growing on Avicel supplemented with CBHI produced about 33% of the lipid that was generated in glucose medium. Furthermore, fatty acid methyl ester (FAME) analysis showed that when growing on pre-saccharified Avicel substrates, it produced a higher proportion of C14 fatty acids, which has an interesting implication in that shorter fatty acid chains have characteristics that are ideal for use in jet fuel. This substrate-specific shift in FAME profile warrants further investigation.


Assuntos
Genômica/métodos , Mucor/metabolismo , Proteômica/métodos , Celobiose/metabolismo , Celulase/metabolismo , Celulose/metabolismo , Ácidos Graxos/metabolismo , Proteínas Fúngicas/metabolismo , Glucosidases/metabolismo , Metabolismo dos Lipídeos/fisiologia , Mucor/enzimologia , Mucor/genética
17.
Proc Natl Acad Sci U S A ; 110(36): 14646-51, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23959893

RESUMO

Plant cell-wall polysaccharides represent a vast source of food in nature. To depolymerize polysaccharides to soluble sugars, many organisms use multifunctional enzyme mixtures consisting of glycoside hydrolases, lytic polysaccharide mono-oxygenases, polysaccharide lyases, and carbohydrate esterases, as well as accessory, redox-active enzymes for lignin depolymerization. Many of these enzymes that degrade lignocellulose are multimodular with carbohydrate-binding modules (CBMs) and catalytic domains connected by flexible, glycosylated linkers. These linkers have long been thought to simply serve as a tether between structured domains or to act in an inchworm-like fashion during catalytic action. To examine linker function, we performed molecular dynamics (MD) simulations of the Trichoderma reesei Family 6 and Family 7 cellobiohydrolases (TrCel6A and TrCel7A, respectively) bound to cellulose. During these simulations, the glycosylated linkers bind directly to cellulose, suggesting a previously unknown role in enzyme action. The prediction from the MD simulations was examined experimentally by measuring the binding affinity of the Cel7A CBM and the natively glycosylated Cel7A CBM-linker. On crystalline cellulose, the glycosylated linker enhances the binding affinity over the CBM alone by an order of magnitude. The MD simulations before and after binding of the linker also suggest that the bound linker may affect enzyme action due to significant damping in the enzyme fluctuations. Together, these results suggest that glycosylated linkers in carbohydrate-active enzymes, which are intrinsically disordered proteins in solution, aid in dynamic binding during the enzymatic deconstruction of plant cell walls.


Assuntos
Celulose 1,4-beta-Celobiosidase/metabolismo , Celulose/metabolismo , Proteínas Fúngicas/metabolismo , Lignina/metabolismo , Sítios de Ligação , Ligação Competitiva , Biocatálise , Domínio Catalítico , Celulose 1,4-beta-Celobiosidase/química , Proteínas Fúngicas/química , Glicosilação , Hidrólise , Espectrometria de Massas , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Trichoderma/enzimologia , Trichoderma/metabolismo
18.
J Ind Microbiol Biotechnol ; 40(8): 823-30, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23700177

RESUMO

A starch-inducible homologous expression system in Acremonium cellulolyticus was constructed to successfully produce recombinant cellulolytic enzymes. A. cellulolyticus Y-94 produced amylolytic enzymes and cellulolytic enzymes as major proteins in the culture supernatant when grown with soluble starch (SS) and Solka-Flock cellulose (SF), respectively. To isolate a strong starch-inducible promoter, glucoamylase (GlaA), which belongs to glycoside hydrolase family 15, was purified from the SS culture of Y-94, and its gene was identified in the genome sequence. The 1.4-kb promoter and 0.4-kb terminator regions of glaA were amplified by polymerase chain reaction (PCR) and used in the construction of a plasmid that drives the expression of the cellobiohydrolase I (Cel7A) gene from A. cellulolyticus. The resultant expression plasmid, containing pyrF as a selection marker, was randomly integrated into the genome of the A. cellulolyticus Y-94 uracil auxotroph. The prototrophic transformant, Y203, produced recombinant Cel7A as an extracellular protein under control of the glaA promoter in the SS culture. Recombinant and wild-type Cel7A were purified from the SS culture of Y203 and the SF culture of A. cellulolyticus CF-2612, respectively. Both enzymes were found to have the same apparent molecular weight (60 kDa), thermostability (T m 67.0 °C), and optimum pH (pH 4.5), and showed similar catalytic properties for soluble and insoluble substrates. These results suggest that the A. cellulolyticus starch-inducible expression system will be helpful for characterization and improvement of fungal cellulolytic enzymes.


Assuntos
Acremonium/enzimologia , Acremonium/genética , Celulose 1,4-beta-Celobiosidase/biossíntese , Amido/metabolismo , Celulose/metabolismo , Celulose 1,4-beta-Celobiosidase/química , Celulose 1,4-beta-Celobiosidase/genética , Glucana 1,4-alfa-Glucosidase/genética , Glucana 1,4-alfa-Glucosidase/metabolismo , Regiões Promotoras Genéticas , Proteínas Recombinantes/biossíntese
19.
Methods Mol Biol ; 908: 197-211, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22843401

RESUMO

Plant cell walls are composed of three basic structural biomolecules: cellulose, hemicellulose, and lignin with cellulose being the most abundant biopolymer on earth. Cellulose is composed of cellodextrins, which are linear polymers of glucose, and considered to be microcrystalline in structure. The conversion of cellulose to free glucose is one of the primary steps in the fermentative conversion of biomass to fuels and chemicals. However, the crystalline nature of this complex, noncovalent structure is highly resistant to enzymatic hydrolysis. Thus, the substantial cost currently associated with biomass saccharification primarily represents the cost of biomass degrading enzymes. Despite the fact that the microbial cellulose hydrolytic "machinery" for the recycling of carbon from plant biomass already exists in nature, the natural enzymatic degradation of plant material is typically a slow and complex process. Thus, if commercial biofuels production is to become a reality, it must be more cost-effective. One method proposed for achieving this objective is to express all or some of the requisite cellulolytic enzymes in planta, thus reducing both enzyme and thermochemical pretreatment costs.


Assuntos
Actinomycetales/enzimologia , Biotecnologia/métodos , Glicosídeo Hidrolases/metabolismo , Lignina/metabolismo , Nicotiana/metabolismo , Trichoderma/enzimologia , Zea mays/metabolismo , Biocombustíveis , Biomassa , Western Blotting , Técnicas de Química Analítica/métodos , Corantes Fluorescentes/metabolismo , Glicosídeo Hidrolases/genética , Nicotiana/química , Zea mays/química
20.
Curr Opin Biotechnol ; 20(3): 330-8, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19523812

RESUMO

Natural processes of recycling carbon from plant cell walls are slow but very efficient, generally involving microbial communities and their secreted enzymes. Efficient combinations of microbial communities and enzymes act in a sequential and synergistic manner to degrade plant cell walls. Recent understanding of plant cell wall ultra-structure, as well as the carbon metabolism, ATP production, and ecology of participating microbial communities, and the biochemical properties of their cellulolytic enzymes have led to new perspectives on saccharification of biomass. Microbial communities are dynamic functions of the chemical and structural compositions of plant cell wall components. The primitive 'multicellularity' exhibited by certain cellulolytic microorganisms may play a role in facilitating cell-cell communication and cell-plant cell wall-substrate interaction.


Assuntos
Parede Celular/metabolismo , Plantas/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Biomassa , Comunicação Celular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA