Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Clin Cancer Res ; 28(20): 4466-4478, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-35653119

RESUMO

PURPOSE: Propagation of Ewing sarcoma requires precise regulation of EWS::FLI1 transcriptional activity. Determining the mechanisms of fusion regulation will advance our understanding of tumor progression. Here we investigated whether HOXD13, a developmental transcription factor that promotes Ewing sarcoma metastatic phenotypes, influences EWS::FLI1 transcriptional activity. EXPERIMENTAL DESIGN: Existing tumor and cell line datasets were used to define EWS::FLI1 binding sites and transcriptional targets. Chromatin immunoprecipitation and CRISPR interference were employed to identify enhancers. CUT&RUN and RNA sequencing defined binding sites and transcriptional targets of HOXD13. Transcriptional states were investigated using bulk and single-cell transcriptomic data from cell lines, patient-derived xenografts, and patient tumors. Mesenchymal phenotypes were assessed by gene set enrichment, flow cytometry, and migration assays. RESULTS: We found that EWS::FLI1 creates a de novo GGAA microsatellite enhancer in a developmentally conserved regulatory region of the HOXD locus. Knockdown of HOXD13 led to widespread changes in expression of developmental gene programs and EWS::FLI1 targets. HOXD13 binding was enriched at established EWS::FLI1 binding sites where it influenced expression of EWS::FLI1-activated genes. More strikingly, HOXD13 bound and activated EWS::FLI1-repressed genes, leading to adoption of mesenchymal and migratory cell states that are normally suppressed by the fusion. Single-cell analysis confirmed that direct transcriptional antagonism between HOXD13-mediated gene activation and EWS::FLI1-dependent gene repression defines the state of Ewing sarcoma cells along a mesenchymal axis. CONCLUSIONS: Ewing sarcoma tumors are comprised of tumor cells that exist along a mesenchymal transcriptional continuum. The identity of cells along this continuum is, in large part, determined by the competing activities of EWS::FLI1 and HOXD13. See related commentary by Weiss and Bailey, p. 4360.


Assuntos
Sarcoma de Ewing , Linhagem Celular Tumoral , Plasticidade Celular , Imunoprecipitação da Cromatina , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteína Proto-Oncogênica c-fli-1/genética , Proteína Proto-Oncogênica c-fli-1/metabolismo , Proteína EWS de Ligação a RNA/genética , Proteína EWS de Ligação a RNA/metabolismo , Sarcoma de Ewing/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Nucleic Acids Res ; 44(3): e22, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26384417

RESUMO

Next-generation sequencing (NGS) technologies have transformed genomic research and have the potential to revolutionize clinical medicine. However, the background error rates of sequencing instruments and limitations in targeted read coverage have precluded the detection of rare DNA sequence variants by NGS. Here we describe a method, termed CypherSeq, which combines double-stranded barcoding error correction and rolling circle amplification (RCA)-based target enrichment to vastly improve NGS-based rare variant detection. The CypherSeq methodology involves the ligation of sample DNA into circular vectors, which contain double-stranded barcodes for computational error correction and adapters for library preparation and sequencing. CypherSeq is capable of detecting rare mutations genome-wide as well as those within specific target genes via RCA-based enrichment. We demonstrate that CypherSeq is capable of correcting errors incurred during library preparation and sequencing to reproducibly detect mutations down to a frequency of 2.4 × 10(-7) per base pair, and report the frequency and spectra of spontaneous and ethyl methanesulfonate-induced mutations across the Saccharomyces cerevisiae genome.


Assuntos
DNA/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação , Linhagem Celular , Genes p53 , Humanos , Reação em Cadeia da Polimerase/métodos , Saccharomyces cerevisiae/genética
5.
Aging Cell ; 13(1): 29-38, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23911137

RESUMO

Due largely to the inability to accurately quantify and characterize de novo deletion events, the mechanisms underpinning the pathogenic expansion of mtDNA deletions in aging and neuromuscular disorders remain poorly understood. Here, we outline and validate a new tool termed 'Digital Deletion Detection' (3D) that allows for high-resolution analysis of rare deletions occurring at frequencies as low as 1 × 10(-8) . 3D is a three-step process that includes targeted enrichment for deletion-bearing molecules, single-molecule partitioning of genomes into thousands of droplets for direct quantification via droplet digital PCR, and breakpoint characterization using massively parallel sequencing. Using 3D, we interrogated over 8 billion mitochondrial genomes to analyze the age-related dynamics of mtDNA deletions in human brain tissue. We demonstrate that the total deletion load increases with age, while the total number and diversity of unique deletions remain constant. Our data provide support for the hypothesis that expansion of pre-existing mutations is the primary factor contributing to age-related accumulation of mtDNA deletions.


Assuntos
Encéfalo/metabolismo , Análise Mutacional de DNA/métodos , DNA Mitocondrial/genética , Deleção de Sequência , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/genética , Encéfalo/patologia , Heterogeneidade Genética , Humanos , Pessoa de Meia-Idade , Mitose , Adulto Jovem
6.
Biotechniques ; 55(2): 61-7, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23931593

RESUMO

Due to the high cost of failed runs and suboptimal data yields, quantification and determination of fragment size range are crucial steps in the library preparation process for massively parallel sequencing (or next-generation sequencing). Current library quality control methods commonly involve quantification using real-time quantitative PCR and size determination using gel or capillary electrophoresis. These methods are laborious and subject to a number of significant limitations that can make library calibration unreliable. Herein, we propose and test an alternative method for quality control of sequencing libraries using droplet digital PCR (ddPCR). By exploiting a correlation we have discovered between droplet fluorescence and amplicon size, we achieve the joint quantification and size determination of target DNA with a single ddPCR assay. We demonstrate the accuracy and precision of applying this method to the preparation of sequencing libraries.


Assuntos
DNA de Neoplasias/análise , Biblioteca Gênica , Reação em Cadeia da Polimerase/métodos , Linhagem Celular Tumoral , DNA de Neoplasias/química , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Reprodutibilidade dos Testes , Análise de Sequência de DNA
7.
Science ; 320(5872): 77-82, 2008 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-18388288

RESUMO

Group II introns are self-splicing ribozymes that catalyze their own excision from precursor transcripts and insertion into new genetic locations. Here we report the crystal structure of an intact, self-spliced group II intron from Oceanobacillus iheyensis at 3.1 angstrom resolution. An extensive network of tertiary interactions facilitates the ordered packing of intron subdomains around a ribozyme core that includes catalytic domain V. The bulge of domain V adopts an unusual helical structure that is located adjacent to a major groove triple helix (catalytic triplex). The bulge and catalytic triplex jointly coordinate two divalent metal ions in a configuration that is consistent with a two-metal ion mechanism for catalysis. Structural and functional analogies support the hypothesis that group II introns and the spliceosome share a common ancestor.


Assuntos
Bacillaceae/genética , Íntrons , Splicing de RNA , RNA Bacteriano/química , RNA Catalítico/química , Regulação Alostérica , Bacillaceae/química , Pareamento de Bases , Sítios de Ligação , Catálise , Domínio Catalítico , Cristalografia por Raios X , Evolução Molecular , Ligantes , Magnésio/química , Modelos Moleculares , Conformação de Ácido Nucleico , Filogenia , RNA Bacteriano/metabolismo , RNA Catalítico/metabolismo , Spliceossomos/química , Spliceossomos/metabolismo
8.
Mol Biol Cell ; 16(6): 3010-8, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15829566

RESUMO

How mitochondrial DNA (mtDNA) copy number is determined and modulated according to cellular demands is largely unknown. Our previous investigations of the related DNA helicases Pif1p and Rrm3p uncovered a role for these factors and the conserved Mec1/Rad53 nuclear checkpoint pathway in mtDNA mutagenesis and stability in Saccharomyces cerevisiae. Here, we demonstrate another novel function of this pathway in the regulation of mtDNA copy number. Deletion of RRM3 or SML1, or overexpression of RNR1, which recapitulates Mec1/Rad53 pathway activation, resulted in an approximately twofold increase in mtDNA content relative to the corresponding wild-type yeast strains. In addition, deletion of RRM3 or SML1 fully rescued the approximately 50% depletion of mtDNA observed in a pif1 null strain. Furthermore, deletion of SML1 was shown to be epistatic to both a rad53 and an rrm3 null mutation, placing these three genes in the same genetic pathway of mtDNA copy number regulation. Finally, increased mtDNA copy number via the Mec1/Rad53 pathway could occur independently of Abf2p, an mtDNA-binding protein that, like its metazoan homologues, is implicated in mtDNA copy number control. Together, these results indicate that signaling through the Mec1/Rad53 pathway increases mtDNA copy number by altering deoxyribonucleoside triphosphate pools through the activity of ribonucleotide reductase. This comprises the first linkage of a conserved signaling pathway to the regulation of mitochondrial genome copy number and suggests that homologous pathways in humans may likewise regulate mtDNA content under physiological conditions.


Assuntos
Proteínas de Ciclo Celular/genética , DNA Mitocondrial/genética , Proteínas Fúngicas/genética , Dosagem de Genes , Proteínas Serina-Treonina Quinases/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2 , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Peptídeos e Proteínas de Sinalização Intracelular , Modelos Biológicos , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fator Trefoil-2
9.
Mol Biol Evol ; 22(5): 1165-74, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15703237

RESUMO

Mecoptera and Siphonaptera represent two insect orders that have largely been overlooked in the study of insect vision. Recent phylogenetic evidence demonstrates that Mecoptera (scorpionflies) is paraphyletic, with the order Siphonaptera (fleas) nesting as sister to the family Boreidae (snow fleas), showing an evolutionary trend towards reduction in gross eye morphology within fleas. We provide the first molecular characterization of long-wavelength opsins from these three lineages (opsin gene from fleas [FL-Opsin], the Boreidae [B-Opsin], and a mecopteran family [M-Opsin]) and assess the effects of loss of visual acuity on the structure and function of the opsin gene. Phylogenetic analysis implies a physiological sensitivity in the red-green spectrum for these opsins. Analysis of intron splice sites reveals a high degree of similarity between FL-Opsin and B-Opsin as well as conserved splice sites across insect blue-green and long-wavelength opsins. Calculated rates of evolution and tests for destabilizing selection indicate that FL-Opsin, B-Opsin, and M-Opsin are evolving at similar rates with no radical selective pressures, implying conservative evolution and functional constraint across all three lineages.


Assuntos
Dípteros/fisiologia , Proteínas de Insetos/genética , Células Fotorreceptoras de Invertebrados/fisiologia , Filogenia , Opsinas de Bastonetes/genética , Sifonápteros/fisiologia , Acuidade Visual/fisiologia , Animais , Sequência Conservada , Evolução Molecular , Íntrons , Splicing de RNA
10.
Mol Phylogenet Evol ; 30(3): 789-97, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15012956

RESUMO

We present the first formal analysis of phylogenetic relationships among the Asilidae, based on four genes: 16S rDNA, 18S rDNA, 28S rDNA, and cytochrome oxidase II. Twenty-six ingroup taxa representing 11 of the 12 described subfamilies were selected to produce a phylogenetic estimate of asilid subfamilial relationships via optimization alignment, parsimony, and maximum likelihood techniques. Phylogenetic analyses support the monophyly of Asilidae with Leptogastrinae as the most basal robber fly lineage. Apocleinae+(Asilinae+Ommatiinae) is supported as monophyletic. The laphriinae-group (Laphriinae+Laphystiinae) and the dasypogoninae-group (Dasypogoninae+Stenopogoninae+Stichopogoninae+ Trigonomiminae) are paraphyletic. These results suggest that current subfamilial classification only partially reflects robber fly phylogeny, indicating the need for further phylogenetic investigation of this group.


Assuntos
DNA Ribossômico/genética , Dípteros/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , RNA Ribossômico 16S/genética , Animais , Classificação , Bases de Dados como Assunto , Evolução Molecular , Filogenia , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA